Background: The association of tooth loss with mortality from all causes, cardiovascular diseases (CVD), and coronary heart disease (CHD) has been studied for many years; however, the results are inconsistent.Method: PubMed, Embase, Web of Knowledge, and Cochrane Oral Health Group’s Trials Register databases were searched for papers published from 1966 to August 2018. We conducted dose–response meta-analysis to quantitatively evaluate the relation between tooth loss and risk of mortality from all causes, CVD, and CHD.Results: In the present study, 18 prospective studies conducted until August 2018 were considered eligible for analysis. In the analysis of linear association, the summarized relative risk (RR) values for each 10-, 20-, and 32-tooth loss for all-cause mortality were 1.15 (1.11–1.19), 1.33 (1.23–1.29), and 1.57 (1.39–1.51), respectively. Subgroup and sensitivity analyses showed consistent results. A linear relationship was found among all-cause mortality, with Pnonlinearity = 0.306. The susceptibility to all-cause mortality increased by almost 1.48 times at very high tooth loss (28–32), and slight flattening of the curve was noted. However, the summarized RR values for increment for 10-, 20-, and 32-tooth loss were not or were marginally related to increased risk of mortality from CVD/CHD. Subgroup and sensitivity analyses revealed inconsistent results. Tooth loss showed linear association with CHD mortality but not with CVD mortality. The susceptibility to all-cause mortality increased by almost 1.48 and 1.70 times for CVD and CHD, respectively, at very high tooth loss (28–32). The curve exhibited slight flattening; however, no statistical significance was detected.Conclusion: In the meta-analysis, our findings confirmed the positive relationship between tooth loss and susceptibility to all-cause mortality, but not for circulatory mortality. However, the finding that tooth loss might play a harmful role in the development of all-cause mortality remains inconclusive. Tooth loss may be a potential risk marker for all-cause mortality: however, their association must be further validated through large prospective studies.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival.
A growing body of studies has demonstrated that long non‐coding RNA (lncRNA) are regarded as the primary section of the ceRNA network. This is thought to be the case owing to its regulation of protein‐coding gene expression by functioning as miRNA sponges. However, functional roles and regulatory mechanisms of lncRNA‐mediated ceRNA in cervical squamous cell carcinoma (CESC), as well as their use for potential prediction of CESC prognosis, remains unknown. The aberrant expression profiles of mRNA, lncRNA, and miRNA of 306 cervical squamous cancer tissues and three adjacent cervical tissues were obtained from the TCGA database. A lncRNA‐mRNA‐miRNA ceRNA network in CESC was constructed. Meanwhile, Gene Ontology (GO) and KEGG pathway analysis were performed using Cytoscape plug‐in BinGo and DAVID database. We identified a total of 493 lncRNA, 70 miRNA, and 1921 mRNA as differentially expressed profiles. An aberrant lncRNA‐mRNA‐miRNA ceRNA network was constructed in CESC, it was composed of 50 DElncRNA, 18 DEmiRNA, and 81 DEmRNA. According to the overall survival analysis, 3 out of 50 lncRNA, 10 out of 81 mRNA, and 1 out of 18 miRNA functioned as prognostic biomarkers for patients with CESC (P value < 0.05). We extracted the sub‐network in the ceRNA network and found that two novel lncRNA were recognized as key genes. These included lncRNA MEG3 and lncRNA ADAMTS9‐AS2. The present study provides a new insight into a better understanding of the lncRNA‐related ceRNA network in CESC, and the novel recognized ceRNA network will help us to improve our understanding of lncRNA‐mediated ceRNA regulatory mechanisms in the pathogenesis of CESC.
Observational studies showed that tooth loss is associated with gastric cancer, but the findings are inconsistent. In this study, a meta-analysis was conducted to evaluate the relationship between tooth loss and gastric cancer. Relevant studies were screened in PubMed and Embase databases, and nine observational studies were considered eligible for the analysis. The combined relative risks for the highest versus the lowest categories of tooth loss were 1.86 (95% CI: 1.08–3.21) and 1.31 (95% CI: 1.12–1.53) in case control and cohort studies, respectively. However, unstable results were observed in the stratified and sensitivity analysis. The current evidence, based solely on four case-control studies and five cohort studies, suggested that tooth loss is a potential marker of gastric cancer. However, we can not concluded at this time that tooth loss may be a risk factor for gastric cancer due to significant heterogeneity among studies and mixed results between case-control studies and cohort studies. Additional large-scale and high-quality prospective studies are required to evaluate the association between tooth loss and risk of gastric cancer.
Previous epidemiological research suggests polymorphisms in long non-coding RNA (lncRNA) H19 are associated with an increased risk of cancer, but the results are inconsistent. We therefore conducted a meta-analysis to more accurately determine the association between lncRNA H19 polymorphisms and cancer risk. The PubMed, Embase, and Science Citation Index online databases were searched and 11 relevant studies involving a total of 33,209 participants were identified. Odds ratios (ORs) and corresponding 95% confidence interval (CIs) from these studies were used to detect associations between H19 polymorphisms and cancer risk using five genetic models. The pooled result suggested that the rs2839698 G>A polymorphism was associated with digestive cancer risk in all five models. Moreover, a protective effect against cancer development was observed for the T allele variant of the rs2107425 C>T polymorphism, especially in Caucasian patient populations. No significant associations were found between lncRNA H19 rs217727 G>A polymorphism and cancer risk. In summary, the rs2839698 G>A and rs2107425 C>T polymorphisms in lncRNA H19 may therefore play opposing roles during cancer development, and their effects may vary depending on cancer type and patient ethnicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.