IPv6 geolocation is necessary for many location-based Internet services. However, the accuracy of the current IPv6 geolocation methods including machine-learning-based or deep-learning-based location algorithms are unsatisfactory for users. Strong geographic correlation is observed for measurement path features close to the target IP, so previous methods focused more on stable paths in the vicinity of the probe. Based on this, this paper proposes a new IPv6 geolocation algorithm, SubvectorS_Geo, which is mainly divided into three steps: firstly, it filters geographically relevant routing feature codes layer by layer to approximate the fine-grained trusted region of the target; secondly, it extracts delay vectors into the trusted region; thirdly, it evaluates the vector similarity to determine the final target geolocation information. The final experiments show that the median error distance range is 7.025 km to 9.709 km on three real datasets (Shanghai, New York State, and Tokyo). Compared with the advanced method, the median distance error distance is reduced by at least 6.8% and the average error distance is reduced by at least 9.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.