Hurricane events can cause severe consequences to the secure supply of electricity systems. This article designs a novel twostage approach to minimize hurricane impact on distribution networks by automatic system operation. A dynamic hurricane model is developed, which has a variational wind intensity and moving path. The article then presents a two-stage resilience enhancement scheme that considers predisaster strengthening and postcatastrophe system reconfiguration. The pre-disaster stage evaluates load importance by an improved PageRank algorithm to help deploy the strengthening scheme precisely. Then, a combined soft open point and networked microgrid strategy is applied to enhance system resilience. Load curtailment is quantified considering both power unbalancing and the impact of line overloading. To promote computational efficiency, particle swarm optimization is applied to solve the designed model. A 33-bus electricity system is employed to demonstrate the effectiveness of the proposed method. The results clearly illustrate that the impact of hurricanes on load curtailment, which can be significantly reduced by appropriate network reconfiguration strategies. This model provides system operators a powerful tool to enhance the resilience of distribution systems against extreme hurricane events, reducing load curtailment.
The future energy system embraces growing flexible demand and generation, which bring large-scale uncertainties and challenges to current deterministic network pricing methods.This paper proposes a novel reliability-based probabilistic network pricing method considering demand uncertainty. Network reliability performance, including probabilistic contingency power flow (PCPF) and tolerance loss of load (TLoL), are used to assess the impact of demand uncertainty on actual network investment cost, where PCPF is formulated by the combined cumulant and series expansion. The tail value at risk (TVaR) is used to generate analytical solutions to determine network reinforcement horizons. Then, final network charges are calculated based on the core of the Long-run incremental cost (LRIC) algorithm. A 15-bus system is employed to demonstrate the proposed method. Results indicate that the pricing signal is sensitive to both demand uncertainty and network reliability, incentivising demand to reduce uncertainties. This is the firstever network pricing method that determines network investment costs considering both supply reliability and demand uncertainties. It can guide better sitting and sizing of future flexible demand in distribution systems to minimise investment costs and reduce network charges, thus enabling a more efficient system planning and cheaper integration.
The long-term uncertainty of multi-energy demand poses significant challenges to the coordinated pricing of multiple energy systems (MES). This paper proposes an integrated network pricing methodology for MES based on the long-run-incremental cost (LRIC) to recover network investment costs, affecting the siting and sizing of future distributed energy resources (DERs) and incentivizing the efficient utilization of MES. The stochasticity of multi-energy demand growth is captured by the Geometric Brownian Motion (GBM)-based model. Then, it is integrated with a system operation model to minimize operation costs, considering low-carbon targets and flexible demand. Thereafter, the kernel density estimation (KDE) method is used to perform the probabilistic optimal energy flow (POEF) to obtain energy flows under uncertain load conditions. Based on the probability density functions (PDFs) of energy flows, an LRIC-based network pricing model is designed, where Tail Value at Risk (TVaR) is used to model the risks of loading levels of branches and pipelines. The performance of the proposed methodology is validated on a typical MES. The proposed pricing method can stimulate cost-effective planning and utilization of MES infrastructures under long-term uncertainty, thus helping reduce low-carbon transition costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.