Unmanned aerial vehicle (UAV) systems undergo a period of rapid development in both civil and military scenarios. A major challenge in the malicious jamming environment is to guarantee the reliability of UAV communications links. Frequency hopping (FH) is one of the most commonly used means of combatting the influence brought about by jamming. In this paper, we integrate low-rate codes into an anti-jamming FH communications system, and propose an efficient and low-complexity turbo-Hadamard code scheme. Tail-biting is applied to design the component convolutional-Hadamard codes, and a corresponding decode algorithm is used for implementation in the UAV hardware platform. Numerical simulation results demonstrate that the anti-jamming performance of this method is improved as compared with conventional concatenated codes. Finally, we compare the complexity and transmission efficiency of the proposed algorithm with the algorithms implemented on the field programmable gate array (FPGA) platform in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.