Gesture detection based on RF signals has gained increasing popularity in recent years due to several benefits it has brought such as eliminating the need to carry additional devices and providing better privacy. In traditional methods, significant breakthroughs have been made to improve recognition accuracy and scene robustness, but the limited computing power of edge devices (the first-level equipment to receive signals) and the requirement of fast response for detection have not been adequately addressed. In this paper, we propose a lightweight Wi-Fi gesture recognition system, referred to as WiFine, which is designed and implemented for deployment on low-end edge devices without the use of any additional high-performance services in the process. Towards these goals, we first design algorithms for phase difference selection and amplitude enhancement, respectively, to tackle the problem of data drift caused by user change. Then, we design a cross-dimension fusion method to extract features of finer granularity from information of different dimensions, thus solving the precision problem of feature granularity. Finally, we design a lightweight neural network architecture by leveraging redundancy to reduce computational cost while ensuring satisfactory recognition accuracy. Extensive experimental results show that the proposed system achieves fast recognition of various actions with an accuracy up to 96.03% in 0.19 seconds.
Power fault monitoring based on acoustic waves has gained a great deal of attention in industry. Existing methods for fault diagnosis typically collect sound signals on site and transmit them to a back-end server for analysis, which may fail to provide a real-time response due to transmission packet loss and latency. However, the limited computing power of edge devices and the existing methods for feature extraction pose a significant challenge to performing diagnosis on the edge. In this paper, we propose a fast Lightweight Fault Diagnosis method for power transformers, referred to as LightFD, which integrates several technical components. Firstly, before feature extraction, we design an asymmetric Hamming-cosine window function to reduce signal spectrum leakage and ensure data integrity. Secondly, we design a multidimensional spatio-temporal feature extraction method to extract acoustic features. Finally, we design a parallel dual-layer, dual-channel lightweight neural network to realize the classification of different fault types on edge devices with limited computing power. Extensive simulation and experimental results show that the diagnostic precision and recall of LightFD reach 94.64% and 95.33%, which represent an improvement of 4% and 1.6% over the traditional SVM method, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.