Abstract-In this paper, the authors propose a nodecooperative automatic repeat request (ARQ) scheme for wireless ad hoc networks, which is suitable for mobile wireless channels with high and correlated frame-error profile. An analytical model based on a two-state Markovian process is proposed to describe the behavior of the proposed retransmission scheme and to obtain its throughput, average delay, and delay jitter. The results of Monte Carlo simulations are included to demonstrate the efficacy of the proposed scheme and to verify the accuracy of the analytical models. Results show that a cooperation among a small number of nodes can significantly improve the performance of the retransmission process in terms of throughput, average delay, and delay jitter by reducing the average duration of retransmission trials.Index Terms-Automatic repeat request (ARQ), cooperative diversity, network performance, wireless ad hoc networks.
The newly emerged vehicular ad hoc network adopts the contention based IEEE 802.11 DCF as its MAC. While it has been extensively studied in the stationary indoor environment (e.g., WLAN), the performance of DCF in the highly mobile vehicular environment is still unclear. On addressing this issue, we propose a simple but accurate analytical model to evaluate the throughput performance of DCF in the high speed vehicleto-infrastructure (V2I) communications. We unveil the impacts of nodes mobility (velocity and moving directions) on the system throughput. Particularly, we show that with node velocity increasing, the throughput of DCF decreases monotonically, which demonstrates the inefficiency of DCF in the highly mobile environment. Via extensive simulations, we validate the accuracy of the developed analytical model and finally discuss the method to optimize DCF towards the maximal throughput.
Quantum Key Distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterpriselevel computing has been researched, to enable quantum-safe communication. A novel method for constructing a key management service is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The key management service operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.
Abstract-This paper presents an analytical approach to determining the maximum number of on/off voice flows that can be supported over a wireless local area network (WLAN), under a quality of service (QoS) constraint. We consider multiclass distributed coordination function (DCF) based medium access control (MAC) that can provision service differentiation via contention window (CW) differentiation. Each on/off voice flow specifies a stochastic delay bound at the network layer as the QoS requirement. The downlink voice flows are multiplexed at the access point (AP) to alleviate the MAC congestion, where the AP is assigned a smaller CW compared to that of the mobile nodes to guarantee the aggregate downlink throughput. There are six-fold contributions in this paper: 1) a nonsaturated multiclass DCF model is developed; 2) a cross-layer framework is proposed, which integrates the network-layer queueing analysis with the multiclass DCF MAC modeling; 3) the channel busyness ratio control is included in the framework to guarantee the analysis accuracy; 4) the framework is exploited for statistical multiplexing gain analysis, network capacity planning, contention window optimization, and voice traffic rate design; 5) a head-ofline outage dropping (HOD) scheme is integrated with the AP traffic multiplexing to further improve the MAC channel utilization; 6) performance of the proposed cross-layer analysis and the associated applications are validated by extensive computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.