Eradicating triple negative breast cancer (TNBC) resistant to neoadjuvant chemotherapy (NACT) is a critical unmet clinical need. In this study, patient-derived xenograft (PDX) models of treatment-naïve TNBC and serial biopsies from TNBC patients undergoing NACT were used to elucidate mechanisms of chemoresistance in the neoadjuvant setting. Barcode-mediated clonal tracking and genomic sequencing of PDX tumors revealed that residual tumors remaining after treatment with standard front-line chemotherapies, doxorubicin (Adriamycin) combined with cyclophosphamide (AC), maintained the subclonal architecture of untreated tumors yet their transcriptomes, proteomes, and histologic features were distinct from those of untreated tumors. Once treatment was halted, residual tumors gave rise to AC-sensitive tumors with similar transcriptomes, proteomes, and histological features to those of untreated tumors. Taken together, these results demonstrated that tumors can adopt a reversible drug-tolerant state that does not involve clonal selection as an AC resistance mechanism. Serial biopsies obtained from patients with TNBC undergoing NACT revealed similar histologic changes as well as maintenance of stable subclonal architecture, demonstrating that AC-treated PDXs capture molecular features characteristic of human TNBC chemoresistance. Finally, pharmacologic inhibition of oxidative phosphorylation using an inhibitor currently in phase I clinical development delayed residual tumor regrowth. Thus, AC resistance in treatment-naïve TNBC can be mediated by non-selective mechanisms that confer a reversible chemotherapy-tolerant state with targetable vulnerabilities.
Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Aktderived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.Akt | glioma | DNA repair | RCAS/tv-a mouse model
Subsets of cancer survivors who have been subjected to thoracic irradiation face the prospect of developing pulmonary injury. Radiation-induced pulmonary fibrosis is an insidious injury that presents 6 to 24 months after irradiation and continues to progress over a period of years. TGF-β and reactive oxygen species contribute significantly to the pathogenesis of this injury. The transcription factor NRF2 controls antioxidant gene expression and therefore regulates the cellular oxidant burden. This work demonstrates an additional paradigm for NRF2: suppression of TGF-β-mediated signaling, assessed by measuring expression of a surrogate TGF-β1 target gene (PAI-1) in lung fibroblasts. Thoracic irradiation of Nfe2l2 (−/−) mice resulted in rapid expression of PAI-1 and FSP-1 compare to irradiated wild type mice. Examination of lung tissue 16 weeks after thoracic irradiation of Nfe2l2 (−/−) mice revealed the presence of distended alveoli and decreased numbers of alveoli compared to wild type mice. Suppression of NRF2 expression shortened life span in mice administered 16 Gy to the thorax. Nfe2l2 (+/−) and (−/−) mice exhibited a mean life span of 176 days compared to wild type mice that lived an average of 212 days. These novel results identify NRF2 as a susceptibility factor for development of late tissue injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.