We develop a fast algorithm to construct the robustness degradation function, which describes quantitatively the relationship between the proportion of systems guaranteeing the robustness requirement and the radius of the uncertainty set. This function can be applied to predict whether a controller design based on an inexact mathematical model will perform satisfactorily when implemented on the true system.
In this paper, we develop an exact method for the determination of the minimum sample size for estimating the proportion of a finite population with prescribed margin of error and confidence level. By characterizing the behavior of the coverage probability with respect to the proportion, we show that the computational complexity can be significantly reduced and bounded regardless of population size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.