The effect of aerosol particle size on the performance of an N95 filtering facepiece respirator (FFR) and a surgical mask (SM) was evaluated under different breathing conditions, including breathing frequency and mean inspiratory flow (MIF) rate. The FFR and SM were sealed on a manikin headform and challenged with charge-equilibrated NaCl aerosol. Filter penetration (P filter ) was determined as the ratio of aerosol concentrations inside and outside the FFR/SM size-selectively (28 channels) within a range of 20 to 500 nm. In addition, the same models of the FFR and SM were donned, but not sealed, on an advanced manikin headform covered with skin-like material. Total inward leakage (TIL), which represents the total particle penetration, was measured under conditions identical to the filter penetration experiment. Testing was conducted at four mean MIFs (15, 30, 55, and 85 L/min) combined with five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). The results show that SM produced much higher P filter and TIL values, and thus provide little protection against aerosols in the size range tested. P filter was significantly affected by particle size and breathing flow rate (p < 0.05) for the tested FFR and SM. Surprisingly, for both devices, P filter as a function of the particle size exhibited more than one peak under all tested breathing conditions. The effect of breathing frequency on P filter was generally less pronounced, especially for lower MIFs. For the FFR and SM, TIL increased with increasing particle size up to about 50 nm; for particles above 50 nm, the total penetration was not significantly affected by particle size and breathing frequency; however, the effect of MIF remained significant.
A three-year study examined changes in N95 filtering-facepiece respirator (FFR) fit at six-month intervals and the relationship between fit and changes in weight for 229 subjects. During each visit, subjects performed a total of nine fit tests using three samples of the same FFR model. Inward leakage and filter penetration were measured for each donned respirator to determine face seal leakage (FSL). A total of 195 subjects completed the second visit and 134 subjects completed all seven visits. Acceptable fit was defined as 90th percentile FSL ≤ 5% and at least one fit factor ≥ 100. An unacceptable fit was observed for 14, 10, 7, 12, 15, and 16% of subjects on Visits 2–7, respectively. The predicted risk of an unacceptable fit increased with increasing length of time between fit tests, from 10% at Year 1 to 20% at Year 2 and to 25% at Year 3. Twenty-four percent of subjects who lost ≥ 20 lb had an unacceptable fit; these percentages ranged from 7–17% for subjects with lower weight losses or any degree of weight gain. Results support the current OSHA requirement for annual fit testing and suggest that respirator users who lose more than 20 lb should be re-tested for respirator fit.
BACKGROUND: In the United States, over 50% of the deaths of on-duty firefighters are classified as sudden cardiac deaths. A holistic view of the multiple risk factors and their relation to the prevalence of cardiovascular disease (CVD) is necessary to determine a baseline for prevention. METHODS: This study surveyed 154 firefighters in a large Midwestern county about their individual exposure to particulates, noise, heat stress, skin contamination, and physical stress; lifestyle factors such as exercise, diet, smoking, and alcohol consumption; health status; and demographic factors. RESULTS: Consumption of whole grains and alcohol were associated with a reduction of the risk of heart disease, while higher Body Mass Index (BMI) scores and increasing age were associated with increased risk of heart disease. CONCLUSIONS: Although firefighters are exposed to substantial occupational risks, only lifestyle factors were found to significantly predict CVD and related health issues. BMI is a modifiable risk factor, which, if controlled, could appreciably improve health outcomes.
Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.