In this paper, an adaptive nonsingular terminal sliding mode control (ANTSMC) is investigated for attitude tracking of spacecraft with actuator faults. First, a nonsingular fast terminal sliding mode surface is designed to avoid the singularity. Finite-time attitude control is developed using the nonsingular terminal sliding mode technique, which can make the attitude and angular velocity tracking errors converge to zero in finite time in the presence of uncertainties and external disturbances. Second, the total uncertainty is deduced to be bounded. The adaptive laws are incorporated to develop the ANTSMC, removing the restriction on the upper bound of the lumped uncertainty. The finite-time convergence of the closed-loop system with ANTSMC is proved using the Lyapunov stability theory. Finally, the simulation results are presented to demonstrate the performance of the proposed controllers. INDEX TERMS Spacecraft, nonsingular terminal sliding mode, adaptive, finite time, attitude control, actuator faults.
Idiopathic scoliosis (IS) is a complex three-dimensional (3D) deformity. The non-operative treatments for IS have been developed for a long time. According to current studies, hard braces are more effective than soft braces for the treatment of scoliosis. Though current braces are proved to be effective for the treatment of IS, there are several shortcomings needed to be overcome: (i) Braces cannot realize precise control over a specific vertebra. (ii) Braces affect cardiopulmonary efficiency (braces limit maximal exercise performance). (iii) The brace is not modulated based on user’s needs. (iv) Braces, including motions during eating, tying shoes, sitting, and standing. (v) Braces apply forces on skin, which causes pain, skin breakdown, and abnormal deformation of bone. In order to solve these boring problems of the current braces, this paper proposed a new intelligent robotic spine brace based on the principle of human biomechanics, three point pressure treatment theory and parallel mechanism theory. This novel brace can offer 3D active dynamic adjustable corrective forces for the treatment of IS and some experiments are employed for verifying the effect of the proposed brace.
According to the parallel mechanism theory, this paper proposes a novel intelligent robotic spine brace for the treatment of scoliosis. Nevertheless, this type of parallel mechanism has the following disadvantages: strong dynamic coupling in task space or joint space, adverse effect of system’s gravity, and lower response frequency in roll and pitch orientations, which seriously affect the performance of the system. In order to solve those boring problems, this paper presents a novel active force control structure, modal space dynamic feed-forward (MSDF) force control strategy. Besides, this paper expresses the intelligent robotic brace system model including the dynamic and kinematic models and the electric actuator model with Kane strategy. The stability of the intelligent system with the novel control strategy is proved. In order to evaluate the performance of the presented MSDF force control method, this paper builds the parallel mechanism experimental platform. It can be seen from experimental results that the proposed motion control method solves these boring problems well.
This article presents a novel robotic brace for the treatment of scoliosis. The motivation of this new device comes from the shortcomings in current braces including the rigid brace and the soft brace. Besides, the novel active brace can be used not only for applying active corrective forces on spine, but also for the rehabilitation exercise. The design and control architectures are described for the novel brace and genetic algorithm is used to obtain optimal structural parameters. Two Stewart platforms connected in series form this brace which is driven by 12 electric actuators. Each platform can be controlled in motion or force mode independently. The device can move in six orientations in motion mode and apply six-degree-of-freedom forces on the spine in force mode. In order to evaluate the function and performance of the dynamic brace system, a simple proportional-integral-differential control strategy is employed in both the two control modes. Experimental results depict that the proposed device can respond to the desired position/force commands excellently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.