Two-photon (TP) fluorescent probes are potential candidates for near-infrared (NIR) imaging which holds great promise in biological research. However, currently, most TP probes emit at wavelength <600 nm, which impedes their practical applications. In this work, we explored the TP properties of a silicon-rhodamine (SiR) derivative and hence developed the first SiR scaffold based "NIR-to-NIR" TP probe (SiRNO) for nitric oxide (NO). SiRNO exhibited high sensitivity and specificity, as well as fast response for NO detection. It was able to track the subtle variation of intracellular NO content in live cells. Owing to the NIR excitation and emission, SiRNO enabled the detection of NO in situ in the xenograft tumor mouse model, revealing the NO generation during the tumor progression. This work indicates that SiR can be an ideal platform for the development of NIR emissive TP probe and may thus promote the advancement of NIR imaging.
A malignant tumor remains one of the leading causes of deaths across the world. Thus, diagnosis of tumor development with noninvasive visualizing methods is significant for tumor therapy. Herein, an activatable two-photon NIR fluorescent probe DHQ-Rd-PN for in vivo imaging of peroxynitrite in a tumor was elaborately designed. The probe demonstrated an increased NIR emission in response to peroxynitrite in vitro, which ensured that the probe detects ONOO– in cell and in vivo. Cellular imaging results disclosed that the probe was competent to detect adscititious ONOO– level change in HeLa cells, as well as endogenous ONOO– concentration in lipopolysaccharides (LPS) and IFN-γ-stimulated RAW 264.7 cells. Additionally, zebrafish in vivo imaging revealed that the probe accumulated in the pancreas and was lightened up by the addition of ONOO–. Remarkably, the probe can be harnessed to image an ONOO– production profile in xenograft 4T1 tumor mice by both one-photon and two-photon in vivo fluorescence imaging. Benefiting with the two-photon excitable properties and NIR emissive properties, the probe can be used for noninvasive in vivo imaging of ONOO– in the onset and development of tumors for the first time. This work provided a noninvasive and efficient detection method for ONOO– in a tumor, which would find more applications in tumor diagnosis and therapies.
Inflammation is an important protection reaction in living organisms associated with many diseases. Since peroxynitrite (ONOO − ) is engaged in the inflammatory processes, illustrating the key nexus between ONOO − and inflammation is significant. Due to the lack of sensitive ONOO − in vivo detection methods, the research still remains at its infancy. Herein, a highly sensitive NIR fluorescence probe DDAO-PN for in vivo detection of ONOO − in inflammation progress was reported. The probe responded to ONOO − with significant NIR fluorescence enhancement at 657 nm (84-fold) within 30 s in solution. Intracellular imaging of exogenous ONOO − with the probe demonstrated a 68-fold fluorescence increase (F/F 0 ). Impressively, the probe can in vivo detect ONOO − fluxes in LPS-induced rear leg inflammation with a 4.0-fold fluorescence increase and LPS-induced peritonitis with an 8.0-fold fluorescence increase The remarkable fluorescence enhancement and quick response enabled real-time tracking of in vivo ONOO − with a large signal-to-noise (S/N) ratio. These results clearly denoted that DDAO-PN was able to be a NIR fluorescence probe for in vivo detection and high-fidelity imaging of ONOO − with high sensitivity and will boost the research of inflammation-related diseases.
Pyrroloquinoline quinone (PQQ) has invoked considerable interest because of its presence in foods, antioxidant properties, cofactor of dehydrogenase, and amine oxidase. Protective roles of PQQ in central nervous system diseases, such as experimental stroke and spinal cord injury models have been emerged. However, it is unclear whether intracerebral hemorrhage (ICH), as an acute devastating disease, can also benefit from PQQ in experimental conditions. Herein, we examined the possible effect of PQQ on neuronal functions following ICH in the adult rats. The results showed that rats pretreated with PQQ at 10 mg/kg effectively improved the locomotor functions, alleviated the hematoma volumes, and reduced the expansion of brain edema after ICH. Also, pretreated rats with PQQ obviously reduced the production of reactive oxygen species after ICH, probably due to its antioxidant properties. Further, we found that, Bcl-2/Bax, the important indicator of oxidative stress insult in mitochondria after ICH, exhibited increasing ratio in PQQ-pretreated groups. Moreover, activated caspase-3, the apoptotic executor, showed coincident alleviation in PQQ groups after ICH. Collectively, we speculated that PQQ might be an effective and potential neuroprotectant in clinical therapy for ICH.
Neuroinflammation plays a vital role in cerebral ischemic stroke (IS). In the acute phase of IS, microglia are activated towards the pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Argon, an inert gas, can reduce neuroinflammation and alleviate ischemia/reperfusion (I/R) injury. However, whether argon regulates M1/M2 polarization to protect against I/R injury as well as the underlying mechanism has not been reported. In this study, we analyzed the activation and polarization of microglia after I/R injury with or without argon administration and explored the effects of argon on NLRP3 inflammasome-mediated inflammation in microglia in vitro and in vivo. The results showed that argon application inhibited the activation of M1 microglia/macrophage in the ischemic penumbra and the expression of proteins related to NLRP3 inflammasome and pyroptosis in microglia. Argon administration also inhibited the expression and processing of IL-1β, a primary pro-inflammatory cytokine. Thus, argon alleviates I/R injury by inhibiting pro-inflammatory reactions via suppressing microglial polarization towards M1 phenotype and inhibiting the NF-κB/NLRP3 inflammasome signaling pathway. More importantly, we showed that argon worked better than the specific NLRP3 inflammasome inhibitor MCC950 in suppressing neuroinflammation and protecting against cerebral I/R injury, suggesting the therapeutic potential of argon in neuroinflammation-related neurodegeneration diseases as a potent gas inhibitor of the NLRP3 inflammasome signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.