Magnetic field can affect the transformation temperature and microstructure if a transformed phase has different susceptibility with parent phase. Fe-C alloy is an ideal system to show the magnetic field effect since in this system, austenite (fcc structure) is a paramagnetic phase and ferrite (bcc structure) is a ferromagnetic phase below 770 C. In this paper, phase transformation temperature in Fe-C alloys in a magnetic field was measured from cooling curve. It was found that the transformation temperature for pure Fe from austenite to ferrite has a linear relationship with magnetic field strength, increasing about 0.8 C per unit of magnetic field of 1 T. For eutectoid transformation in Fe-0.8C alloy, similar relationship exists, the transformation temperature increases about 1.5 C per unit of magnetic field of 1 T. Experimental results do not agree well with that calculated by molecular field theory. An elongated and aligned microstructure by transformation in a high magnetic field was found in an Fe-0.4C alloy, but was not found in pure Fe and Fe-0.8C alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.