Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of β-cypermethrin (β-CY; 50 mg L(-1)) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) in 22 h. The half-lives of β-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of β-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of β-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. β-CY degradation products were analyzed. Results indicated that YAT strain transformed β-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food.
ATP-dependent chromatin remodeling complexes regulate nucleosome organizations. In Drosophila, gene Brm encodes the core Brahma complex, the ATPase subunit of SWI/SNF class of chromatin remodelers. Its role in modulating the nucleosome landscape in vivo is unclear. In this study, we knocked down Brm in Drosophila third instar larvae to explore the changes in nucleosome profiles and global gene transcription. The results show that Brm knockdown leads to nucleosome occupancy changes throughout the entire genome with a bias in occupancy decrease. In contrast, the knockdown has limited impacts on nucleosome position shift. The knockdown also alters another important physical property of nucleosome positioning, fuzziness. Nucleosome position shift, gain or loss and fuzziness changes are all enriched in promoter regions. Nucleosome arrays around the 5′ ends of genes are reorganized in five patterns as a result of Brm knockdown. Intriguingly, the concomitant changes in the genes adjacent to the Brahma-dependent remodeling regions have important roles in development and morphogenesis. Further analyses reveal abundance of AT-rich motifs for transcription factors in the remodeling regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.