Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. The five-year survival rate of HNSCC has not improved even with major technological advancements in surgery and chemotherapy. Currently, docetaxel, cisplatin, and 5-fluoruracil (TPF) treatment has been the most popular chemotherapy method for HNSCC; but only a small percentage of HNSCC patients exhibit a good response to TPF treatment. Unfortunately, at present, no reasonably effective prediction model exists to assist clinicians with patient treatment. For this reason, patients have no other alternative but to risk neoadjuvant chemotherapy in order to determine their response to TPF. In this study, we analyzed the gene expression profile in TPF-sensitive and non-sensitive patient samples. We identified a gene expression signature between these two groups. We further chose 10 genes and trained a support vector machine (SVM) model. This model has 88.3% sensitivity and 88.9% specificity to predict the response to TPF treatment in our patients. In addition, four more TPF responsive and four more TPF non-sensitive patient samples were used for further validation. This SVM model has been proven to achieve approximately 75.0% sensitivity and 100% specificity to predict TPF response in new patients. This suggests that our 10-genes SVM prediction model has the potential to assist clinicians to personalize treatment for HNSCC patients.
Many Gram-negative bacteria infect hosts and cause diseases by translocating a variety of type III secreted effectors (T3SEs) into the host cell cytoplasm. However, despite a dramatic increase in the number of available whole-genome sequences, it remains challenging for accurate prediction of T3SEs. Traditional prediction models have focused on atypical sequence features buried in the N-terminal peptides of T3SEs, but unfortunately, these models have had high false-positive rates. In this research, we integrated promoter information along with characteristic protein features for signal regions, chaperone-binding domains, and effector domains for T3SE prediction. Machine learning algorithms, including deep learning, were adopted to predict the atypical features mainly buried in signal sequences of T3SEs, followed by development of a voting-based ensemble model integrating the individual prediction results. We assembled this into a unified T3SE prediction pipeline, T3SEpp, which integrated the results of individual modules, resulting in high accuracy (i.e., ∼0.94) and >1-fold reduction in the false-positive rate compared to that of state-of-the-art software tools. The T3SEpp pipeline and sequence features observed here will facilitate the accurate identification of new T3SEs, with numerous benefits for future studies on host-pathogen interactions.
IMPORTANCE Type III secreted effector (T3SE) prediction remains a big computational challenge. In practical applications, current software tools often suffer problems of high false-positive rates. One of the causal factors could be the relatively unitary type of biological features used for the design and training of the models. In this research, we made a comprehensive survey on the sequence-based features of T3SEs, including signal sequences, chaperone-binding domains, effector domains, and transcription factor binding promoter sites, and assembled a unified prediction pipeline integrating multi-aspect biological features within homology-based and multiple machine learning models. To our knowledge, we have compiled the most comprehensive biological sequence feature analysis for T3SEs in this research. The T3SEpp pipeline integrating the variety of features and assembling different models showed high accuracy, which should facilitate more accurate identification of T3SEs in new and existing bacterial whole-genome sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.