BackgroundInflammatory cytokines and transforming growth factor-β (TGF-β) are mutually inhibitory. However, hyperactivation of nuclear factor-κB (NF-κB) and TGF-β signaling both emerge in glioblastoma. Here, we report microRNA-148a (miR-148a) overexpression in glioblastoma and that miR-148a directly suppressed Quaking (QKI), a negative regulator of TGF-β signaling.MethodsWe determined NF-κB and TGF-β/Smad signaling activity using pNF-κB-luc, pSMAD-luc, and control plasmids. The association between an RNA-induced silencing complex and QKI, mitogen-inducible gene 6 (MIG6), S-phase kinase–associated protein 1 (SKP1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was tested with microribonucleoprotein immunoprecipitation and real-time PCR. Xenograft tumors were established in the brains of nude mice.ResultsQKI suppression induced an aggressive phenotype of glioblastoma cells both in vitro and in vivo. Interestingly, we found that NF-κB induced miR-148a expression, leading to enhanced-strength and prolonged-duration TGF-β/Smad signaling. Notably, these findings were consistent with the significant correlation between miR-148a levels with NF-κB hyperactivation and activated TGF-β/Smad signaling in a cohort of human glioblastoma specimens.ConclusionsThese findings uncover a plausible mechanism for NF-κB–sustained TGF-β/Smad activation via miR-148a in glioblastoma, and may suggest a new target for clinical intervention in human cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-14-2) contains supplementary material, which is available to authorized users.
Oxidative stress (OS) induces osteoblast apoptosis, which plays a crucial role in the initiation and progression of osteoporosis. Although OS is closely associated with mitochondrial dysfunction, detailed mitochondrial mechanisms underlying OS-induced osteoblast apoptosis have not been thoroughly elucidated to date. In the present study, we found that mitochondrial abnormalities largely contributed to OS-induced osteoblast apoptosis, as evidenced by enhanced production of mitochondrial reactive oxygen species; considerable reduction in mitochondrial respiratory chain complex activity, mitochondrial membrane potential, and adenosine triphosphate production; abnormality in mitochondrial morphology; and alteration of mitochondrial dynamics. These mitochondrial abnormalities were primarily mediated by an imbalance in mitochondrial fusion and fission through a protein kinase B- (AKT-) glycogen synthase kinase 3β- (GSK3β-) optic atrophy 1- (OPA1-) dependent mechanism. Hydroxytyrosol (3,4-dihydroxyphenylethanol (HT)), an important compound in virgin olive oil, significantly prevented OS-induced osteoblast apoptosis. Specifically, HT inhibited OS-induced mitochondrial dysfunction by decreasing OPA1 cleavage and by increasing AKT and GSK3β phosphorylation. Together, our results indicate that the AKT-GSK3β signaling pathway regulates mitochondrial dysfunction-associated OPA1 cleavage, which may contribute to OS-induced osteoblast apoptosis. Moreover, our results suggest that HT could be an effective nutrient for preventing osteoporosis development.
The formations of cell-in-cell structures have been found in several important biological processes. Recent studies have shed light on the biochemical signaling pathways as well as the quantitative understandings of the underlying physics. Multiple new features that regulate the cellular engulfment have been identified. However, the driving forces promoting the structural formation are still under debate. This review focuses on the recent progress and discusses the potential significance of the existing physical models.
Gliomas are the most common, malignant, and lethal tumors in adults. Furthermore, gliomas are highly resistant to current chemotherapeutic drugs. Thus, new effective anticancer drugs for glioma are urgently needed. Selenium nanoparticles have been reported to have potent anti-tumor activity, although the specific mechanism is not fully understood. This study aimed to test the anti-tumor effect of selenium nanoparticles and its mechanism. We used selenium nanoparticles to treat commercial glioma cell lines, and patient-derived glioma cells, and then used the MTT assay to determine selenium nanoparticles effect against these. Apoptotic cell death was determined by annexin V-Fluos staining kit. Glucose uptake, lactate, and adenosine triphosphate production, together with hexokinase 2 and pyruvate kinase activities were measured to determine the glucose metabolism level. Reactive oxygen species production was tested using 2′,7′-dichlorodihydrofluorescein diacetate. Our results showed that selenium nanoparticles had a potent cytotoxic effect in glioma cells, regardless of whether they were drug-resistant or not, whereas it showed less toxic effect in normal healthy cells. Further tests showed that selenium nanoparticles treatment leads to apoptotic cell death enhancement and glucose metabolism reduction, and this process was in a reactive oxygen species pathway-dependent manner. These results may provide a novel direction for glioma therapy in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.