Fucoxanthin is a natural marine xanthophyll and exhibits a broad range of biological activities. In the present study, a simple and efficient two-step method was used to purify fucoxanthin from the diatom, Phaeodactylum tricornutum. The crude pigment extract of fucoxanthin was separated by silica gel column chromatography (SGCC). Then, the fucoxanthin-rich fraction was purified using a hydrophile–lipophile balance (HLB) solid-phase extraction column. The identification and quantification of fucoxanthin were determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). This two-step method can obtain 92.03% pure fucoxanthin and a 76.67% recovery rate. In addition, 1H and 13C NMR spectrums were adopted to confirm the identity of fucoxanthin. Finally, the purified fucoxanthin exhibited strong antioxidant properties in vitro with the effective concentration for 50% of maximal scavenging (EC50) of 1,1-Dihpenyl-2-picrylhydrazyl (DPPH) and 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals being 0.14 mg·mL−1 and 0.05 mg·mL−1, respectively.
Paramylon from Euglena gracilis (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. EGP has been proved to have antibacterial activity, but its effect is weak due to its water insolubility and high crystallinity. In order to change this deficiency, this experiment carried out carboxymethylated modification of EGP. Three carboxymethylated derivatives, C-EGP1, C-EGP2, and C-EGP3, with a degree of substitution (DS) of 0.14, 0.55, and 0.78, respectively, were synthesized by varying reaction conditions, such as the mass of chloroacetic acid and temperature. Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) analysis confirmed the success of the carboxymethylated modification. The Congo red (CR) experiment, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetry (TG) were used to study the conformation, surface morphology, crystalline nature, and thermostability of the carboxymethylated EGP. The results showed that carboxymethylation did not change the triple helix structure of the EGP, but that the fundamental particles’ surface morphology was destroyed, and the crystallization area and thermal stability decreased obviously. In addition, the water solubility test and antibacterial experiment showed that the water solubility and antibacterial activity of the EGP after carboxymethylation were obviously improved, and that the water solubility of C-EGP1, C-EGP2, and C-EGP3 increased by 53.31%, 75.52%, and 80.96% respectively. The antibacterial test indicated that C-EGP3 had the best effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with minimum inhibitory concentration (MIC) values of 12.50 mg/mL and 6.25 mg/mL. The diameters of the inhibition zone of C-EGP3 on E. coli and S. aureus were 11.24 ± 0.15 mm and 12.05 ± 0.09 mm, and the antibacterial rate increased by 41.33% and 43.67%.
Euglena gracilis paramylon (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. The water insolubility of EGP severely limits its application. This work aimed to improve the functional characteristics of EGP by hydrogen peroxide (H2O2) degradation and carboxymethylated modification. The results showed that the crystallinity of EGP degraded by H2O2 and carboxymethylated modification decreased by 14% and 46%, and the thermal degradation temperature was significantly descending in a crystallinity-dependent manner. In addition, the results showed that H2O2 degradation and carboxymethylation significantly improved the adsorption capacity of EGP for oil, dyes, and metal ions, and their water solubility increased by 9% and 85%. This result will provide a valuable theoretical basis for the development and utilization of EGP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.