Mechanical vibration monitoring for rotating mechanical equipment can improve the safety and reliability of the equipment. The traditional wired monitoring technology faces problems such as high-frequency signal pickup and high-precision data collection. Therefore, this paper proposes optimization techniques for mechanical vibration monitoring and signal processing based on wireless sensor networks. First, the hardware design uses high-performance STM32 as the control center and Si4463 as the wireless transceiver core. The monitoring node uses a high-precision MEMS acceleration sensor with a 16-bit resolution ADC acquisition chip to achieve high-frequency, high-precision acquisition of vibration signals. Then, the bearing vibration signal optimization method is studied, and the sparse Bayes algorithm is proposed as a compressed sensing reconstruction algorithm. Finally, the difference in reconstruction accuracy between this method and the traditional reconstruction algorithm is compared through experiments and the effect of this method on the reconstruction performance is analyzed when different parameters are selected.
We offer a neural network-based control method to control the vibration of the engineering mechanical arm and the trajectory in order to solve the problem of large errors in tracking the path when the engineering mechanical arm is unstable and under the influence of the outside world. A mechanical arm network is used to perform tasks related to learning the unknown dynamic properties of a engineering mechanical arms keyboard without the need for prior learning. Given the dynamic equations of the engineering mechanical arm, the dynamic properties of the mechanical arm were studied using a positive feedback network. The adaptive neural network management system was developed, and the stability and integrity of the closed-loop system were proved by Lyapunov’s function. Engineering mechanical arm motion trajectory control errors were modeled and validated in the Matlab/Simulink environment. The simulation results show that the management of the adaptive neural network is able to better control the desired path of the engineering mechanical arm in the presence of external interference, and the fluctuation range of input torque is small. The PID control has a large error in the expected trajectory tracking of the engineering mechanical arm, the fluctuation range of the input torque is as high as 20, and the jitter phenomenon is more serious. The use of detailed comparisons and adaptive neural network monitoring can perform well in manipulating the trajectory of the engineering mechanical arm. The engineering mechanical arm uses an adaptive neural network control method, in which the control precision of engineering mechanical arm motion trajectory can be improved and the out-of-control phenomenon of mechanical arm motion can be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.