Multi-directional aerial platforms can fly in almost any orientation and direction, often maneuvering in ways their underactuated counterparts cannot match. A subset of multidirectional platforms is fully-actuated multirotors, where all six degrees of freedom are independently controlled without redundancies. Fully-actuated multirotors possess much greater freedom of movement than conventional multirotor drones, allowing them to perform complex sensing and manipulation tasks. While there has been comprehensive research on multi-directional multirotor control systems, the spectrum of hardware designs remains fragmented. This paper sets out the hardware design architecture of a fully-actuated quadrotor and its associated control framework. Following the novel platform design, a prototype was built to validate the control scheme and characterize the flight performance. The resulting quadrotor was shown in operation to be capable of holding a stationary hover at 30°incline, and track position commands by thrust vectoring [Video attachment: https://youtu.be/8HOQl 77CVg].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.