Given the non-uniform melting of the end face of the joint and the local non-fusion of the joint in large-diameter hollow stud welding, to research the law of arc motion, the joint forming quality, the weld microstructure and mechanical properties, in the process of hollow stud welding propelled by the longitudinal magnetic field in this paper. The results reveal that under the influence of the longitudinal magnetic field, the arc on the end of stud is affected by Lorentz force and spirals downward. In the welding process, with the increase of magnetic field intensity, the arc uniformly burns the stud end face, preventing local non-fusion and resulting in a well-shaped joint. Under the action of magnetic field stirring, the eutectoid ferrite is broken, the content of eutectoid ferrite and bainite is diminished, the nucleation barrier is reduced and the grain is refined. Under the action of the longitudinal magnetic field, the shear strength of the hollow stud welded joint is raised to 312 MPa, surpassing the strength of a joint welded without a magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.