Cynomorium songaricum is an important endangered plant with significant medicinal and edible values. However, the lack of resources and quality variation have limited the comprehensive developments and sustainable utilization of C. songaricum. Here, we evaluated the chemical and genetic traits of C. songaricum from the highly suitable habitat regions simulated with species distribution models. The PCA and NJ tree analyses displayed intraspecific variation in C. songaricum, which could be divided into two ecotypes: ecotype I and ecotype II. Furthermore, the LC-MS/MS-based metabolomic was used to identify and analyze the metabolites of two ecotypes. The results indicated that a total of 589 compounds were detected, 236 of which were significantly different between the two ecotypes. Specifically, the relative content and the kind of flavonoids were more abundant in ecotype I, which were closely associated with the medicinal activities. In contrast, amino acids and organic acids were more enriched in ecotype II, which may provide better nutritional quality and unique flavor. In summary, our findings demonstrate the ecotype division and chemical diversity of C. songaricum in China from different geographical regions and provide a reference for the development of germplasm and directed plant breeding of endangered medicinal plants.
Opisthopappus C. Shih is a rare genus of the Asteraceae family native to the Taihang Mountains in China. Due to the narrow distribution area, poor reproduction ability and human harvesting, Opisthopappus is threatened by extinction. However, the limited genetic information within Opisthopappus impede understanding of the conservation efforts and bioprospecting. Therefore, in this study, we reported the complete chloroplast (cp) genome sequences of two Opisthopappus species, including Opisthopappus taihangensis and Opisthopappus longilobus. The cp genomes of O. taihangensis and O. longilobus were 151,117 and 151,123 bp, which contained 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The repeat sequences, codon usage, RNA-editing sites, and comparative analyses revealed a high degree of conservation between the two species. The ycf1 gene was identified as a potential molecular marker. The phylogenetic tree demonstrated that O. longilobus was a separate species and not a synonym or variety of O. taihangensis. The molecular clock showed that two species diverge over a large time span, O. longilobus diverged at 15.24 Mya (Million years ago), whereas O. taihangensis diverged at 5.40 Mya We found that Opisthopappus and Ajania are closely related, which provides new ideas for the development of Opisthopappus. These results provide biological information and an essential basis to understand the evolutionary history of the Opisthopappus species, which will aid in the future the bioprospecting and conservation of endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.