Purpose To describe the cervical spine morphology and explore its relationship to global sagittal alignment parameters in the asymptomatic adolescent population. Methods A total of 111 adolescent subjects were included. Sagittal alignment parameters, including C7 Slope, C2-C7 Cobb, C2-7 plumb line (PL), C2-S1 Sagittal Vertical Axis (SVA), C7-S1 SVA, T5-12 Cobb, T10-L2 Cobb, L1-S1 Cobb, pelvic incidence (PI), pelvic tilt (PT) and sacral slope (SS), were obtained from lateral radiographs. Results Forty-four males and sixty-seven females with a mean age of 16.12 ± 2.40 years were included in this study. The mean values of C7 Slope, C2-7 Cobb and C2-7PL were 20.45 ± 8.88°, -7.72 ± 12.10°, and 13.53 ± 11.63 mm, respectively. C2-7 Cobb, C7 Slope showed significant differences between the male and female groups. Correlation analysis showed that C7 slope was significantly correlated with C2-7 Cobb (r = -0.544, P < 0.001), C2-S1 SVA (r = 0.335, P < 0.001), and C7-S1 SVA (r = 0.310, P = 0.001), but not lumbosacral parameters(L5-S1 Cobb, PI, PT, SS). Using a modified method of Toyama to describe the cervical spine morphology, there were 37 cases (33.3%) in the Lordotic group, and C7 slope, C2-7 Cobb and C2-7PL showed significant differences between groups. According to C2-C7 Cobb, there were 80 Lordotic cases (72.1%). C7 slope and C2-7PL were significantly different between the two groups. Conclusion The cervical spine morphology of asymptomatic adolescents varies widely, from lordotic to kyphotic. Combining different classification methods provides a better understanding of the morphology of the cervical spine. C7 slope is an important predictor of global sagittal balance and C2-7PL is a key parameter for restoring cervical lordosis, which should be considered pre-operatively and for conservative treatment. Cervical regional sagittal alignment parameters are not correlated with lumbosacral parameters, and C2-7 Cobb, C7 Slope showed significant differences between males and females.
BackgroundRheumatoid Diseases (RDs) are a group of systemic auto-immune diseases that are characterized by chronic synovitis, and fibroblast-like synoviocytes (FLSs) play an important role in the occurrence and progression of synovitis. Our study is the first to adopt bibliometric analysis to identify the global scientific production and visualize its current distribution in the 21st century, providing insights for future research through the analysis of themes and keywords.MethodsWe obtained scientific publications from the core collection of the Web of Science (WoS) database, and the bibliometric analysis and visualization were conducted by Biblioshiny software based on R-bibliometrix.ResultsFrom 2000 to 2022, a total of 3,391 publications were reviewed. China is the most prolific country (n = 2601), and the USA is the most cited country (cited 7225 times). The Center of Experimental Rheumatology at University Hospital Zürich supported the maximum number of articles (n = 40). Steffen Gay published 85 records with 6263 total citations, perhaps making him the most impactful researcher. Arthritis and Rheumatism, Annals of Rheumatic Diseases, and Rheumatology are the top three journals.ConclusionThe current study revealed that rheumatoid disease (RD)-related fibroblast studies are growing. Based on the bibliometric analysis, we summarized three important topics: activation of different subsets of fibroblasts; regulation of fibroblast function; and in vitro validation of existing discoveries. They are all valuable directions, which provide reference and guidance for researchers and clinicians engaged in the research of RDs and fibroblasts.
Background: The molecular mechanisms of EWS-FLI-mediating target genes and downstream pathways may provide a new way in the targeted therapy of Ewing sarcoma. Meanwhile, enhancers transcript non-coding RNAs, known as enhancer RNAs (eRNAs), which may serve as potential diagnosis markers and therapeutic targets in Ewing sarcoma.Materials and methods: Differentially expressed genes (DEGs) were identified between 85 Ewing sarcoma samples downloaded from the Treehouse database and 3 normal bone samples downloaded from the Sequence Read Archive database. Included in DEGs, differentially expressed eRNAs (DEeRNAs) and target genes corresponding to DEeRNAs (DETGs), as well as the differentially expressed TFs, were annotated. Then, cell type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) was used to infer portions of infiltrating immune cells in Ewing sarcoma and normal bone samples. To evaluate the prognostic value of DEeRNAs and immune function, cross validation, independent prognosis analysis, and Kaplan–Meier survival analysis were implemented using sarcoma samples from the Cancer Genome Atlas database. Next, hallmarks of cancer by gene set variation analysis (GSVA) and immune gene sets by single-sample gene set enrichment analysis (ssGSEA) were identified to be significantly associated with Ewing sarcoma. After screening by co-expression analysis, most significant DEeRNAs, DETGs and DETFs, immune cells, immune gene sets, and hallmarks of cancer were merged to construct a co-expression regulatory network to eventually identify the key DEeRNAs in tumorigenesis of Ewing sarcoma. Moreover, Connectivity Map Analysis was utilized to identify small molecules targeting Ewing sarcoma. External validation based on multidimensional online databases and scRNA-seq analysis were used to verify our key findings.Results: A six-different-dimension regulatory network was constructed based on 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells, 24 immune gene sets, and 8 hallmarks of cancer. Four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) showed significant co-expression relationships in the network. Connectivity Map Analysis screened two candidate compounds, MS-275 and pyrvinium, that might target Ewing sarcoma. PHLDA1 (key DEeRNA) was extensively expressed in cancer stem cells of Ewing sarcoma, which might play a critical role in the tumorigenesis of Ewing sarcoma.Conclusion: PHLDA1 is a key regulator in the tumorigenesis and progression of Ewing sarcoma. PHLDA1 is directly repressed by EWS/FLI1 protein and low expression of FOSL2, resulting in the deregulation of FOX proteins and CC chemokine receptors. The decrease of infiltrating T‐lymphocytes and TNFA signaling may promote tumorigenesis and progression of Ewing sarcoma.
Background. We planned to uncover the cancer stemness-related genes (SRGs) in prostate cancer (PCa) and its underlying mechanism in PCa metastasis. Methods. We acquired the RNA-seq data of 406 patients with PCa from the TCGA database. Based on the mRNA stemness index (mRNAsi) calculated by one-class logistic regression (OCLR) algorithm, SRGs in PCa were extracted by WGCNA. Univariate and multivariate regression analyses were applied to uncover OS-associated SRGs. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Pearson’s correlation analysis were performed to discover the possible mechanism of PCa metastasis. The significantly correlated transcription factors of OS-associated SRGs were also identified by Pearson’s correlation analysis. ChIP-seq was applied to validate the binding relationship of TFs and OS-associated SRGs and spatial transcriptome and single-cell sequencing were performed to uncover the location of key biomarkers expression. Lastly, we explored the specific inhibitors for SRGs using CMap algorithm. Results. We identified 538 differentially expressed genes (DEGs) between non-metastatic and metastatic PCa. Furthermore, OS-associated SRGs were identified. The Pearson correlation analysis revealed that FOXM1 was significantly correlated with NEIL3 (correlation efficient =0.89, p < 0.001 ) and identified hallmark_E2F_targets as the potential pathway mechanism of NEIL3 promoting PCa metastasis (correlation efficient =0.58, p < 0.001 ). Single-cell sequencing results indicated that FOXM1 regulating NEIL3 may get involved in the antiandrogen resistance of PCa. Rottlerin was discovered to be a potential target drug for PCa. Conclusion. We constructed a regulatory network based on SRGs associated with PCa metastasis and explored possible mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.