Accumulating evidence have suggested that long non-coding RNAs (lncRNAs) had malfunctioning roles in the development of human cancers. The present study aimed to investigate the role of lncRNA small nucleolar RNA host gene 5 (SNHG5) in hepatocellular carcinoma (HCC) progression using human tissues and cell lines. The quantitative real-time PCR results showed that SNHG5 was up-regulated in both HCC tissues and hepatoma cell lines and was closely associated with tumor size, hepatitis B virus infection, histologic grade, TNM stage, and portal vein tumor thrombus (PVTT) in HCC patients. Knockdown of SNHG5 induced apoptosis and repressed cell cycle progression, cell growth, and metastasis in hepatoma cell lines, whereas overexpression of SNHG5 had the opposite effects. In vivo functional assay, xenograft tumors grown from SNHG5-knockdown cells had smaller mean volumes than the tumors grown from negative control cells. Further investigations showed that SNHG5 may act as a competing endogenous RNA by competitively binding miR-26a-5p and thereby modulating the derepression of downstream target GSK3β, which were further confirmed by luciferase reporter assay. Functionally, SNHG5 promotes tumor growth and metastasis by activating Wnt/β-catenin pathway and inducing epithelial to mesenchymal transition (EMT). Taken together, SNHG5 promotes HCC progression by competitively binding miR-26a-5p and regulating GSK3β and Wnt/β-catenin signal pathway.
Poor adherence to treatment instructions may play an important role in the failure of Helicobacter pylori eradication. The aim of this study was to evaluate the effects of telephone-based reeducation on 14-day quadruple H. pylori eradication therapy. In total, 162 patients were randomly assigned (1 : 1) to either the intervention group (patients received telephone-based reeducation on the 4th, 7th, and 10th days of the course) or the control group (patients received instructions only at the time of getting the prescriptions). All patients received a 14-day quadruple H. pylori eradication therapy. The primary outcome was the H. pylori eradication rate. The secondary outcomes included the symptom relief rates and the incidence rates of adverse events. Seventy-five patients in the reeducation group and 74 patients in the control group completed the follow-up. The H. pylori eradication rate in the reeducation group was statistically higher than that in the control group (intention-to-treat: 72.8% vs. 50.6%, P=0.006; per-protocol: 78.7% vs. 55.4%, P=0.003). However, the symptom relief rates and the adverse event rates in these two groups were not significantly different. Overall, the results from this study suggest that telephone-based reeducation can be potentially applied to improve the H. pylori eradication rate in clinical practice, without significantly increasing the adverse effects.
Gastric cancer is one of the major causes of cancer mortality. Several microRNAs play a role in the tumor growth and invasion. However, the underlying molecular mechanism remains poorly understood. We detected the miR-638 expression levels in tumor samples and adjacent noncancerous tissues from 68 patients with gastric cancer as well as in the gastric cancer cell line SGC-7901 and SC-M1. The cell cycle was analyzed by flow cytometry, cell proliferation was observed by CCK-8 assay and cell invasion was detected using Transwell assay. MiR-638 was down-regulated in human GC tissues and its expression level was negatively correlated to TNM stage and lymph metastasis. In the cell lines, aberrant expression of miR-638 was related to the cell proliferation, cell cycle and invasion. We also found that SOX2 had a negative correlation with miR-638 in GC tissues, and miR-638 overexpression could decrease SOX2 expression level by directly binding the 3'-UTR of SOX2. in vitro, downregulating SOX2 by siRNA could counteract the effect of miR-638 inhibitor on GC cells proliferation and invasion. Our results demonstrate that miR-638 may play a pivotal role in the growth and invasion of GC.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, therapies against HCC to date have not been completely effective. Sinomenine hydrochloride (SH), an anti‑arthritis drug applied in clinical practice, has been reported to have in vitro anti‑neoplastic activity in various cancer cells. Whether SH inhibits HCC remains unknown. For this purpose, in this study, MTT assay was used to determine cell growth. Flow cytometry, Hoechst staining, DNA fragmentation, western blot analysis, immunohistochemisty and TUNEL staining were performed to investigate the mechanisms involved. The in vivo activity of SH was determined using a mouse xenograft model. SH inhibited the growth of various types of human HCC cells in vitro. We found that SH promoted cell cycle arrest in the G1 phase and sub‑G1 formation, associated with the increased p21/WAF1/Cip1 expression. Additionally, SH induced caspase‑dependent apoptosis, which involved the disruption of mitochondrial membrane potential, the increased release of cytochrome c and Omi/HtrA2 from the mitochondria into the cytoplasm, the downregulation of Bcl‑2 and the upregulation of Bax, the activation of a caspase cascade (caspase‑8, -10, -9 and -3) and PARP, as well as the decreased expression of survivin. The SH‑suppressed growth of human HCC xenografts in vivo occurred due to the decrease in proliferation and the induction of apoptosis, implicating the activation of caspase‑3, the upregulation of p21 and the downregulation of survivin. These findings suggest that SH exhibits anticancer efficacy in vitro and in vivo involving cell cycle and caspase‑dependent apoptosis and may serve as a potential drug candidate against HCC.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. AbstractObjectives: This research aims to verify that the long non-coding RNA differentiation antagonizing nonprotein coding RNA (LncRNA DANCR) could modulate the proliferation and metastasis of hepatocellular carcinoma (HCC), and it thus may work as a novel biomarker to render new orientation for early diagnosis and clinical therapy of HCC. Materials and methods:Firstly, qRT-PCR was used to detect the expression of genes including LncRNA DANCR and miR-27a-3p. Next, MTT assay, Ethynyldeoxyuridine (EdU) analysis and clone formation assay were used for investigating cell growth and proliferation. Meanwhile, transwell assay and wound healing assay were applied to evaluate the capacity of cell metastasis and motility, respectively. In addition, bioinformatic analysis and dual-luciferase reporter assay were applied to analyse molecular interaction. Next, we conducted immunofluorescence and Western blot for mechanic investigation. Last but not the least, xenograft tumours in nude mice were built by subcutaneously injecting Hep3B cells stably transfected with sh-NC and sh-DANCR to detect proliferation and SMMC-7721 cells stably transfected with sh-NC and sh-DANCR to investigate metastasis. Results:The results of qRT-PCR and bioinformatic analysis revealed the high expression of DANCR in HCC. DANCR accelerated proliferation and metastasis of HCC cells and the knockdown of DANCR had the opposite effect. Meanwhile, xenograft tumours in sh-DANCR group grow slower and have smaller volumes compared with negative control group. Next, the antineoplastic effect of miR-27a-3p on cell growth and motility of HCC was confirmed. In addition, we clarified that DANCR acted as a ceRNA to decoy miR-27a-3p via mediating ROCK1/LIMK1/COFILIN1 pathway. In the end, we validated that DANCR/miR-27a-3p axis regulates EMT progression by cell immunofluorescence and Western blot. Conclusions:In a word, DANCR promotes HCC development and induces EMT by decoying miR-27a-3p to regulate ROCK1/LIMK1/COFILIN1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.