In order to solve the problem that a large number of vibration signals cannot be transmitted in real time in the application of wireless sensor networks (WSNs) in mechanical fault diagnosis, a mechanical fault diagnosis method based on multilevel and hierarchical information fusion of WSNs was proposed. In this method, the cluster tree network structure is used to expand the coverage of network monitoring, and WSNs information fusion is divided into three levels: data-level fusion, feature-level fusion, and decision-level fusion. The terminal node performs data-level fusion on the original vibration information to extract feature information; the cluster-head node performs feature-level fusion on the feature information to obtain pattern recognition results; and the gateway node performs decision-level fusion on the recognition results to evaluate the running status of mechanical equipment. The results show that the slight damage fault of the bearing inner ring can be accurately diagnosed by decision-level fusion based on four groups of probability distribution functions. According to the statistics of 30 test results, the fault recognition rate is 83.3%. The method can be applied to mechanical fault diagnosis effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.