Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.