Selenium is an indispensable essential micronutrient for humans and animals, and it can affect biological functions by combining into selenoproteins. The purpose of this study was to investigate the effects of 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) on the antioxidant performance, immune function, and intestinal microbiota composition of gilts. From weaning to the 19th day after the second estrus, 36 gilts (Duroc × Landrace × Yorkshire) were assigned to three treatments: control group, sodium selenite group (0.3 mg Se/kg Na2SeO3), and HMSeBA group (0.3 mg Se/kg HMSeBA). Dietary supplementation with HMSeBA improved the gilts tissue selenium content (except in the thymus) and selenoprotein P (SelP1) concentration when compared to the Na2SeO3 or control group. Compared with the control group, the antioxidant enzyme activity in the tissues from gilts in the HMSeBA group was increased, and the concentration of malondialdehyde in the colon had a decreasing trend (p = 0.07). Gilts in the HMSeBA supplemented group had upregulated gene expression of GPX2, GPX4, and SelX in spleen tissue, TrxR1 in thymus; GPX1 and SelX in duodenum, GPX3 and SEPHS2 in jejunum, and GPX1 in the ileum tissues (p < 0.05). In addition, compared with the control group, the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) in the liver, spleen, thymus, duodenum, ileum, and jejunum of gilts in the HMSeBA group were downregulated (p < 0.05), while the expression of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in the liver, thymus, jejunum, and ileum were upregulated (p < 0.05). Compared with the control group and the Na2SeO3 group, HMSeBA had increased concentration of serum cytokines interleukin-2 (IL-2) and immunoglobulin G (IgG; p < 0.05), increased concentration of intestinal immunoglobulin A (sIgA; p < 0.05), and decreased concentration of serum IL-6 (p < 0.05). Dietary supplementation with HMSeBA also increased the abundance of intestinal bacteria (Ruminococcaceae and Phascolarctobacterium; p < 0.05) and selectively inhibited the abundance of some bacteria (Parabacteroides and Prevotellaceae; p < 0.05). In short, HMSeBA improves the antioxidant performance and immune function of gilts, and changed the structure of the intestinal microflora. And this study provided data support for the application of HMSeBA in gilt and even pig production.
Inflammatory responses reduce milk production in lactating sows. Silymarin may modulate inflammatory reactions. Here, we aimed to verify whether dietary silymarin supplementation could alleviate inflammatory responses in lactating sows through microbiota change in the gut. We also investigated how silymarin impacts inflammatory response in lactating sows. One hundred and ten sows were randomly assigned to a control diet (basal diet) or treatment diet (basal diet and 40 g/d silymarin) from the 108th day of gestation to weaning. Blood, milk, and feces from sows were collected for analysis. It was shown in the results that dietary silymarin supplementation decreased the level of pro-inflammatory cytokine IL-1β (p < 0.05) on the 18th day of lactation in the blood of the sows. Dietary silymarin supplementation tended to decrease (p = 0.06) somatic cell count in the colostrum of sows. Dietary silymarin supplementation reduced the gut bacterial community and the richness of the gut microbial community (p < 0.01) using 16S rRNA gene sequencing. The fecal microbes varied at different taxonomic levels in the lactating sows with silymarin supplementation. The most representative changes included an increase in the relative abundance of Fibrobacteres and Actinobacteria (p < 0.05) and tended to reduce the relative abundance of Spirochaetaes and Tenericutes (p = 0.09, 0.06) at the phylum level. It is suggested that dietary silymarin supplementation in late gestation until lactation has anti-inflammatory effects in lactation sow, which could be associated with the modulation of gut microbiota.
This experiment was conducted to determine the effects of yeast-derived postbiotic (YDP) supplementation in sow diets during late gestation and lactation on the performance of sows and their offspring. At 90 days’ gestation, 150 sows (Landrace × Large White, parity: 3.93 ± 0.11) were allocated to three dietary treatments (n = 50/treatment): 1) basal diet (CON), 2) basal diet with 1.25 g·kg -1 YDP (0.125 group), and 3) basal diet with 2.00 g·kg -1 YDP (0.200 group). The experiment continued until the end of weaning (day 21 of lactation). Supplementation with YDP resulted in greater deposition of backfat in sows during late gestation and an increasing trend in average weaning weight of piglets than observed in the CON group (P < 0.01, P = 0.05). Supplementation with YDP decreased piglet mortality and diarrhea index in piglets (P < 0.05). In farrowing sows’ serum, the glutathione peroxide (GSH-PX) content in the YDP group was lower than that in the CON group (P < 0.05); the content of immunoglobulin A (IgA) in the 0.200 group or YDP group was higher than that in the CON group (P < 0.05). In lactating sows’ serum, malondialdehyde content was higher in the YDP group (P < 0.05). In day 3 milk of sows, the 0.200 group tended to increase the lactose content (P = 0.07), and tended to decrease the secretory immunoglobulin A (sIgA) content (P = 0.06) with respect to that in the CON group. The sIgA content in the YDP group was lower than that in the CON group (P < 0.05). In the milk of sows, the 0.200 group tended to increase the lactose content with respect to that in the CON group (P = 0.08); the immunoglobulin G (IgG) content in the 0.125 group or YDP group was higher than that in the CON group (P < 0.05). YDP supplementation increased the IgA content in the milk (P < 0.01). In sow placenta, the content of total antioxidant capacity (T-AOC) in the YDP group was higher than that in the CON group (P = 0.05); and the content of transforming growth factor-β (TGF-β) in the YDP group was higher than that in the CON group (P < 0.05). In piglet serum, the content of IgG and immunoglobulin M (IgM) in the 0.125 group was higher than that in the CON and 0.200 groups (P < 0.05). In summary, this study indicated that feeding sows diets supplemented with YDP from late gestation through lactation increased sows’ backfat deposition in late gestation and piglets’ weaning weight; decreased piglet mortality and diarrhea index in piglets; and improved maternal and offspring immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.