Fractional telegraph equations are an important class of evolution equations and have widely applications in signal analysis such as transmission and propagation of electrical signals. Aiming at the one-dimensional time-fractional telegraph equation, a class of explicit-implicit (E-I) difference methods and implicit-explicit (I-E) difference methods are proposed. The two methods are based on a combination of the classical implicit difference method and the classical explicit difference method. Under the premise of smooth solution, theoretical analysis and numerical experiments show that the E-I and I-E difference schemes are unconditionally stable, with 2nd order spatial accuracy, 2 − α order time accuracy, and have significant time-saving, their calculation efficiency is higher than the classical implicit scheme. The research shows that the E-I and I-E difference methods constructed in this paper are effective for solving the time-fractional telegraph equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.