Due to its openness and simplicity, Modbus TCP has wide applications to facilitate the actual management and control in industrial wireless fields. However, its potential security vulnerabilities can also create lots of complicated information security challenges, which are increasingly threatening the availability of industrial real-time traffic delivery. Although anomaly detection has been recognized as a workable security measure to identify attacks, the critical step to successfully extract data characteristics is an extremely difficult task. In this paper, we focus on the continuous control mode in industrial processes and propose a control tracing feature algorithm to extract the function-driven tracing characteristics from Modbus TCP data traffic. Furthermore, this algorithm can flexibly integrate the time factor with critical functional operations and adequately describe the dynamic control change of technological processes. To closely cooperate with this algorithm, one optimized SVM (support vector machine) classifier is introduced as the practicable decision engine. By designing one applicable attack mode, we develop an in-depth and meticulous analysis on the decision accuracy, and all experimental results clearly explain that the extracted features can strongly reflect the changing pattern of continuous functional operations, and the proposed algorithm can effectively cooperate with the optimized SVM classifier to distinguish abnormal Modbus TCP data traffic.
IIoT (Industrial Internet of Things) has gained considerable attention and has been increasingly applied due to its ubiquitous sensing and communication. However, the sparse characteristic of sensing data in distributed IIoT networks may bring out tremendous challenges to implement the security protection measures. Based on the design of centralized data gathering and forwarding, this paper proposes a novel anomaly detection approach for IIoT sparse data, which can successfully collaborate the adaptive CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) feature exploitation with one intelligent optimizing classification. Furthermore, in the adaptive CEEMDAN feature exploitation, the CEEMDAN energy entropy based on adaptive IMF (Intrinsic Mode Function) selection is designed to extract the sensing features from IIoT sparse data; in the intelligent optimizing classification, one effective OCSVM (One-Class Support Vector Machine) classifier optimized by the IABC (Improved Artificial Bee Colony) swarm intelligence algorithm is introduced to detect various abnormal sensing features. The experimental results show that, not only does the CEEMDAN energy entropy based on adaptive IMF selection accurately describe the change of industrial production by analyzing the probability distribution and energy distribution of sparse sensing data, but also the proposed IABC-OCSVM classifier has higher detection efficiency compared with the OCSVM classifiers optimized by other swarm intelligence algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.