In order to enhance the positioning capability of terrestrial networks, a novel communication and navigation fusion signal is proposed. The novel signal multiplexes the communication and navigation signal in the same frequency band, and the navigation system is superimposed on the original communication system. However, the application of pseudorandom noise (PRN) sequences in the navigation system is limited by the communication clock period. Taking the application of PRN sequences limited by the clock period as objects, the present study analyzes truncated PRN (TPRN) sequences. PRN sequences with a TPRN sequence as the navigation signal can overcome the communication system clock period limitation. Then, a matched filter algorithm with double detection (MFADD) is proposed to acquire the novel signal. The matched filter method is applied to the proposed algorithm to determine the start code phase of TPRN. Monte Carlo simulations and real data tests demonstrate the effectiveness of the proposed algorithm for the designed signal.
Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.
Digital broadcasting signals represent a promising positioning signal for indoors applications. A novel positioning technology named Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is mainly discussed in this paper, which is based on China mobile multimedia broadcasting (CMMB). Signal strength is an important factor that affects the carrier loop performance of the TC-OFDM receiver. In the case of weak TC-OFDM signals, the current carrier loop algorithm has large residual carrier errors, which limit the tracking sensitivity of the existing carrier loop in complex indoor environments. This paper proposes a novel carrier loop algorithm based on Maximum Likelihood Estimation (MLE) and Kalman Filter (KF) to solve the above problem. The discriminator of the current carrier loop is replaced by the MLE discriminator function in the proposed algorithm. The Levenberg-Marquardt (LM) algorithm is utilized to obtain the MLE cost function consisting of signal amplitude, residual carrier frequency and carrier phase, and the MLE discriminator function is derived from the corresponding MLE cost function. The KF is used to smooth the MLE discriminator function results, which takes the carrier phase estimation, the angular frequency estimation and the angular frequency rate as the state vector. Theoretical analysis and simulation results show that the proposed algorithm can improve the tracking sensitivity of the TC-OFDM receiver by taking full advantage of the characteristics of the carrier loop parameters. Compared with the current carrier loop algorithms, the tracking sensitivity is effectively improved by 2–4 dB, and the better performance of the proposed algorithm is verified in the real environment.
Base station signals have been widely studied as a promising navigation and positioning signal. The time and code division-orthogonal frequency division multiplexing (TC-OFDM) signal is a novel communication and navigation fusion signal that can simultaneously implement communication and positioning services. The TC-OFDM signal multiplexes the pseudorandom noise (PRN) code, called positioning code, and the Chinese mobile multimedia broadcasting (CMMB) signal in the same frequency band. For positioning in the TC-OFDM receiver, it is necessary to acquire and track the PRN code phase and the carrier frequency. The tracking performance is directly influenced by the accuracy of the signal acquisition, especially the acquired carrier frequency accuracy. This paper focuses on the fine frequency acquisition of TC-OFDM receivers and proposes a novel fine frequency estimation algorithm, which uses a non-linear modelling method, called fast orthogonal search (FOS), to improve the frequency acquisition accuracy of TC-OFDM receivers. With this algorithm, the PRN code is first stripped off in coarse code phase. Then, the candidate functions at each of the interest frequencies are generated, which consist of pairs of sine and cosine terms. Finally, the FOS algorithm is used to detect the carrier frequency. Simulation and experimental results show that, compared with the current carrier frequency estimation algorithms, the proposed algorithm effectively improves carrier frequency estimation accuracy and then reduces the time to the first fix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.