OBJECTIVE-Fibroblast growth factor 21 (FGF21) is a metabolic regulator with multiple beneficial effects on glucose homeostasis and insulin sensitivity in animal models. This study aimed to investigate the relationship between its serum levels and various cardiometabolic parameters in humans.
RESEARCH DESIGN AND METHODS-A newly developedimmunoassay was used to measure serum FGF21 levels in 232 Chinese subjects recruited from our previous cross-sectional studies. The mRNA expression levels of FGF21 in the liver and adipose tissues were quantified by real-time PCR.RESULTS-Serum FGF21 levels in overweight/obese subjects were significantly higher than in lean individuals. Serum FGF21 correlated positively with adiposity, fasting insulin, and triglycerides but negatively with HDL cholesterol, after adjusting for age and BMI. Logistic regression analysis demonstrated an independent association between serum FGF21 and the metabolic syndrome. Furthermore, the increased risk of the metabolic syndrome associated with high serum FGF21 was over and above the effects of individual components of the metabolic syndrome. Our in vitro study detected a differentiation-dependent expression of FGF21 in 3T3-L1 adipocytes and human adipocytes. In db/db obese mice, FGF21 mRNA expression was markedly increased in both the liver and adipose tissue compared with that in their lean littermates. Furthermore, FGF21 expression in subcutaneous fat correlated well with its circulating concentrations in humans.CONCLUSIONS-FGF21 is a novel adipokine associated with obesity-related metabolic complications in humans. The paradoxical increase of serum FGF21 in obese individuals, which may be explained by a compensatory response or resistance to FGF21, warrants further investigation.
Hepatic insulin resistance is a key contributor to the pathogenesis of obesity and type 2 diabetes (T2D). Paradoxically the development of insulin resistance in the liver is not universal, but pathway-selective, such that insulin fails to suppress gluconeogenesis but promotes lipogenesis, contributing to the hyperglycemia, steatosis and hypertriglyceridemia that underpin the deteriorating glucose control and microvascular complications in T2D. The molecular basis for the pathway-specific insulin resistance remains unknown. Here we report that oxidative stress accompanying obesity inactivates protein-tyrosine phosphatases (PTPs) in the liver, which activates select signaling pathways that exacerbate disease progression. In obese mice, hepatic PTPN2 (TCPTP) inactivation promoted lipogenesis and steatosis and insulin-STAT-5 signaling. The enhanced STAT-5 signaling increased hepatic IGF-1 production, which suppressed central growth hormone release and exacerbated the development of obesity and T2D. Our studies define a mechanism for the development of selective insulin resistance with wide-ranging implications for diseases characterised by oxidative stress.
Hypoxia in adipose tissue has been postulated as a possible contributor to obesity-related chronic inflammation, insulin resistance, and metabolic dysfunction. HIF1␣ (hypoxia-inducible factor 1␣), a master signal mediator of hypoxia response, is elevated in obese adipose tissue. However, the role of HIF1␣ in obesity-related pathologies remains to be determined. Here we show that transgenic mice with adipose tissue-selective expression of a dominant negative version of HIF1␣ developed more severe obesity and were more susceptible to high fat diet-induced glucose intolerance and insulin resistance compared with their wild type littermates. Obesity in the transgenic mice was attributed to impaired energy expenditure and reduced thermogenesis. Histological examination of interscapular brown adipose tissue (BAT) in the transgenic mice demonstrated a markedly increased size of lipid droplets and decreased mitochondrial density in adipocytes, a phenotype similar to that in white adipose tissue. These changes in BAT of the transgenic mice were accompanied by decreased mitochondrial biogenesis and reduced expression of key thermogenic genes. In the transgenic mice, angiogenesis in BAT was decreased but was little affected in white adipose tissue. These findings support an indispensable role of HIF1␣ in maintaining the thermogenic functions of BAT, possibly through promoting angiogenesis and mitochondrial biogenesis in this tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.