(1) Background: Early diagnosis and treatment are essential to reduce the mortality rate of bladder cancer (BLCA). We aimed to develop deep learning (DL)-based weakly supervised models for the diagnosis of BLCA and prediction of overall survival (OS) in muscle-invasive bladder cancer (MIBC) patients using whole slide digitized histological images (WSIs). (2) Methods: Diagnostic and prognostic models were developed using 926 WSIs of 412 BLCA patients from The Cancer Genome Atlas cohort. We collected 250 WSIs of 150 BLCA patients from the Renmin Hospital of Wuhan University cohort for external validation of the models. Two DL models were developed: a BLCA diagnostic model (named BlcaMIL) and an MIBC prognostic model (named MibcMLP). (3) Results: The BlcaMIL model identified BLCA with accuracy 0.987 in the external validation set, comparable to that of expert uropathologists and outperforming a junior pathologist. The C-index values for the MibcMLP model on the internal and external validation sets were 0.631 and 0.622, respectively. The risk score predicted by MibcMLP was a strong predictor independent of existing clinical or histopathologic indicators, as demonstrated by univariate Cox (HR = 2.390, p < 0.0001) and multivariate Cox (HR = 2.414, p < 0.0001) analyses. The interpretability of DL models can help in the analysis of critical regions associated with tumors to enrich the information obtained from WSIs. Furthermore, the expression of six genes (ANAPC7, MAPKAPK5, COX19, LINC01106, AL161431.1 and MYO16-AS1) was significantly associated with MibcMLP-predicted risk scores, revealing possible potential biological correlations. (4) Conclusions: Our study developed DL models for accurately diagnosing BLCA and predicting OS in MIBC patients, which will help promote the precise pathological diagnosis of BLCA and risk stratification of MIBC to improve clinical treatment decisions.
Although the tumor-stroma ratio (TSR) has prognostic value in many cancers, the traditional semi-quantitative visual assessment method has inter-observer variability, making it impossible for clinical practice. We aimed to develop a machine learning (ML) algorithm for accurately quantifying TSR in hematoxylin-and-eosin (H&E)-stained whole slide images (WSI) and further investigate its prognostic effect in patients with muscle-invasive bladder cancer (MIBC). We used an optimal cell classifier previously built based on QuPath open-source software and ML algorithm for quantitative calculation of TSR. We retrospectively analyzed data from two independent cohorts to verify the prognostic significance of ML-based TSR in MIBC patients. WSIs from 133 MIBC patients were used as the discovery set to identify the optimal association of TSR with patient survival outcomes. Furthermore, we performed validation in an independent external cohort consisting of 261 MIBC patients. We demonstrated a significant prognostic association of ML-based TSR with survival outcomes in MIBC patients (p < 0.001 for all comparisons), with higher TSR associated with better prognosis. Uni- and multivariate Cox regression analyses showed that TSR was independently associated with overall survival (p < 0.001 for all analyses) after adjusting for clinicopathological factors including age, gender, and pathologic stage. TSR was found to be a strong prognostic factor that was not redundant with the existing staging system in different subgroup analyses (p < 0.05 for all analyses). Finally, the expression of six genes (DACH1, DEEND2A, NOTCH4, DTWD1, TAF6L, and MARCHF5) were significantly associated with TSR, revealing possible potential biological relevance. In conclusion, we developed an ML algorithm based on WSIs of MIBC patients to accurately quantify TSR and demonstrated its prognostic validity for MIBC patients in two independent cohorts. This objective quantitative method allows application in clinical practice while reducing the workload of pathologists. Thus, it might be of significant aid in promoting precise pathology services in MIBC.
(1) Purpose: Although assessment of tumor-infiltrating lymphocytes (TILs) has been acknowledged to have important predictive prognostic value in muscle-invasive bladder cancer (MIBC), it is limited by inter- and intra-observer variability, hampering widespread clinical application. We aimed to evaluate the prognostic value of quantitative TILs score based on a machine learning (ML) algorithm to identify MIBC patients who might benefit from immunotherapy or the de-escalation of therapy. (2) Methods: We constructed an artificial neural network classifier for tumor cells, lymphocytes, stromal cells, and “ignore” cells from hematoxylin-and-eosin-stained slide images using the QuPath open source software. We defined four unique TILs variables based on ML to analyze TILs measurements. Pathological slide images from 133 MIBC patients were retrospectively collected as the discovery set to determine the optimal association of ML-read TILs variables with patient survival outcomes. For validation, we evaluated an independent external validation set consisting of 247 MIBC patients. (3) Results: We found that all four TILs variables had significant prognostic associations with survival outcomes in MIBC patients (p < 0.001 for all comparisons), with higher TILs score being associated with better prognosis. Univariate and multivariate Cox regression analyses demonstrated that electronic TILs (eTILs) variables were independently associated with overall survival after adjustment for clinicopathological factors including age, sex, and pathological stage (p < 0.001 for all analyses). Results analyzed in different subgroups showed that the eTILs variable was a strong prognostic factor that was not redundant with pre-existing clinicopathological features (p < 0.05 for all analyses). (4) Conclusion: ML-driven cell classifier-defined TILs variables were robust and independent prognostic factors in two independent cohorts of MIBC patients. eTILs have the potential to identify a subset of high-risk stage II or stage III-IV MIBC patients who might benefit from adjuvant immunotherapy.
Background: Bladder cancer (BCa) is the most common malignancy of the urinary system. Inflammation is critical in the occurrence and development of BCa. The purpose of this study was to identify key genes and pathways of inflammatory bowel disease in BCa through text mining technology and bioinformatics technology, and to explore potential therapeutic drugs for BCa.Methods: Genes associated with BCa and Crohn's disease (CD) were detected using the text mining tool GenClip3, and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape, and modular analysis was performed using the Molecular Complex Detection plugin (MCODE). Finally, the genes clustered in the first two modules were selected as core genes, and the drug-gene interaction database was used to discover potential therapeutic drugs.Results: We identified 796 genes shared by "Bladder cancer" and " Crohn's disease " by text mining. Gene function enrichment analysis yielded 18 enriched GO terms and the 6 most relevant KEGG pathways. A PPI network with 758 nodes and 4014 edges was constructed, and 20 gene modules were obtained using MCODE. We selected the top two gene clusters as core candidate genes. We found that 3 out of 55 selected core genes could be targeted by 26 existing drugs.Conclusions: The results indicated that CXCL12, FGF2 and FSCN1 are potential key genes involved in CD with BCa. Additionally, 26 drugs were identified as potential therapeutics for BCa treatment and management.
Background and Aims Inter‐operator variations in the level of intraoperative laparoscope control by surgeons influence surgical outcomes. We aimed to construct a laparoscopic surgery quantification system (LSQS) for real‐time evaluation of the surgeon's laparoscope control to improve intraoperative manipulation of the laparoscope. Methods Using 1888 images from 80 laparoscopic videos for training, the U‐Net, PSPNet, LinkNet, and DeepLabv3+ models were used to segment surgical instruments. The percentage of the instruments in central area was defined as the new indicator and the threshold was determined from 20 laparoscopic videos. The differences between expert and non‐expert laparoscopic operators before and after LSQS were compared. Results Among the three segmentation models (U‐Net, PSPNet, and LinkNet), the PSPNet model had the highest index (precision 0.9135; F1 score 0.9058; mIoU 0.8280). The validation experiment showed that LSQS could help non‐expert users to more easily achieve expert‐level control of the laparoscope. Conclusions Deep‐learning technology successfully fed back real‐time intraoperative information on level of laparoscope control and may facilitate better visualisation of the surgical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.