We present experimentally an obvious enhancement of the terahertz (THz) radiation with two paralleled filaments pumped by two-color laser fields for a full use of a high laser power, compared with single filament. By mapping the 3-dimensional electric trajectories of generated THz fields with a (111) ZnTe crystal, we observe that the total THz polarization from two filaments can be manipulated by varying the time delay between the two orthogonally polarized pumps, which agrees well with the simulations under the photocurrent model. Notably, the power and spectrum of the THz field almost keep unchanged while manipulating the ellipticity of the THz polarization, which is important for a polarization-controllable THz source.
This paper presents a novel design for single-shot terahertz polarization detection based on terahertz time-domain spectroscopy (THz-TDS). Its validity has been confirmed by comparing its detection results with those of the THz common-path spectral interferometer through two separate measurements for the orthogonal components. Our results also show that its detection signal-to-noise ratios (SNRs) are obviously superior to those of the 45° optical bias THz-TDS by electro-optical sampling due to its operation on common-path spectral interference rather than the polarization-sensitive intensity modulation. The setup works without need of any optical scan, which does not only save time, but also efficiently avoids the disturbances from the fluctuations of the system and environment. Its single-shot mode allows it to work well for the applications with poor or no repeatability.
We have experimentally investigated the propagation effect of terahertz (THz) radiation from a long filament by checking the evolution of THz temporal waveform through shifting the longitudinal position of a short filament. The results show that the relative delay and carrier-envelope phase of the THz waveform change linearly with the shifted distance of the filament. After measuring the longitudinal intensity distributions of laser fields in long filament, we reconstruct successfully the process of the polarization-controlled THz radiation in a long filament. Besides, we also discuss the efficiency and polarization of THz radiation from a long filament excited by a circularly polarized two-color laser field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.