The cell-fate transition between pluripotent and totipotent states determines embryonic development and the first cell-lineage segregation. However, limited by the scarcity of totipotent embryos, regulators on this transition remain largely elusive. A novel model to study the transition has been recently established, named the 2-cell-like (2C-like) model. The 2C-like cells are rare totipotent-like cells in the mouse embryonic stem cell (mESC) culture. Pluripotent mESCs can spontaneously transit into and out of the 2C-like state. We previously dissected the transcriptional roadmap of the transition. In this study, we revealed that Zfp281 is a novel regulator for the pluripotent-to-totipotent transition in mESCs. Zfp281 is a transcriptional factor involved in the cell-fate transition. Our study shows that Zfp281 represses transcripts upregulated during the 2C-like transition via Tet1 and consequentially inhibits mESCs from transiting into the 2C-like state. Interestingly, we found that the inhibitory effect of Zfp281 on the 2C-like transition leads to an impaired 2C-like-transition ability in primed-state mESCs. Altogether, our study reveals a novel mediator for the pluripotent-to-totipotent state transition in mESCs and provides insights into the dynamic transcriptional control of the transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.