The 22nd chromatography component (F22) of the Fasciola gigantica excretory-secretory products (FgESP) shows better diagnostic value than the FgESP, and diagnostic methods based on F22 have also been established. Thus, exploring its immunomodulatory function and potential as a molecular vaccine candidate is attractive. In the present study, the effect of F22 on the mitogen-induced proliferation of buffalo peripheral blood mononuclear cells (PBMCs) in the innate immune response was preliminarily studied using the FgESP as a control. PBMCs were incubated with concanavalin A (ConA) and phytohemagglutinin (PHA) at optimal (1 µg/well) or suboptimal (0.25 µg/well) doses coupled with FgESP and F22 at different doses (1–16 µg/well). Cell proliferation was then assessed by microenzyme reaction colorimetry (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay). In addition, the components of F22 were also explored by mass spectrometry and then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to infer their functions. The results indicated that FgESP decreased the proliferation of PBMCs stimulated with ConA and PHA at specific doses, whereas F22 significantly decreased the proliferation of PBMCs stimulated with ConA and PHA at both optimal and suboptimal doses (p < 0.05). Two hundred and sixteen proteins were identified in F22, and these included 86 proteins that could be assigned to more than one pathway and some with robust immunomodulatory ability. Further studies should be performed to investigate the immunomodulatory function of F22 in the adaptive immune response, and the components of F22 can be further studied as potential vaccine candidate molecules.
IntroductionWidespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis.MethodsBuffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC–MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions.Results and discussionProteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
The 22nd chromatography component of the Fasciola gigantica excretory-secretory product (FgESP), F22, has shown potential diagnostic value, and diagnostic methods based on FgESP have also been established. Thus, exploring its immunomodulatory function and possibility as a molecular vaccine candidate is attractive. In the present study, the effect of F22 on the mitogen-induced proliferation of buffalo peripheral blood mononuclear cells (PBMCs) was studied. PBMCs were incubated with concanavalin A (ConA) and phytohemagglutinin (PHA) at optimal (1 µg/well) or suboptimal (0.25 µg/well) doses coupled with FgESP and F22 at different doses (1–16 µg/well). Then, cell proliferation was determined by microenzyme reaction colorimetry (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay). FgESP had a slight effect on the proliferation of buffalo PBMCs stimulated with ConA and PHA, while F22 decreased the proliferation of PBMCs stimulated with ConA and PHA at both optimal and suboptimal doses. Further studies should be performed to investigate the immunomodulatory function of F22.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.