The microstructure, texture, and mechanical properties of the asymmetric welded joint in variable polarity plasma arc (VPPA) welding were studied and discussed in this paper. The asymmetric welded joint was obtained through horizontal welding, where the effect of gravity caused asymmetric material flow. The results showed that the grain size and low angle grain boundary (LAGB) at both sides of the obtained welded joint were asymmetric; the grain size differed by a factor of 1.3. The average grain size of the Base Metal (BM), Lower-weld zone (WZ) and Upper-WZ were 25.73 ± 1.25, 37.87 ± 1.89 and 49.92 ± 2.49 µm, respectively. There is discrepancy between the main textures in both sides of the welded joint. However, the effect of asymmetric metal flow on the weld texture was not significant. The micro-hardness distribution was inhomogeneous, the lowest hardness was observed in regions with larger grain sizes and smaller low angle grain boundary. During tensile strength tests, the specimens fractured at the position with the lowest hardness although it has reached 89.2% of the strength of the BM. Furthermore, the effect of asymmetric metal flow and underlying causes of asymmetric weld properties in VPPA horizontal welding have been discussed and analyzed.
In the field of operation research, linear programming (LP) is the most utilized apparatus for genuine application in various scales. In our genuine circumstances, the manager/decision-makers (DM) face problems to get the optimal solutions and it even sometimes becomes impossible. To overcome these limitations, neutrosophic set theory is presented, which can handle all types of decision, that is, concur, not certain, and differ, which is common in real-world situations. By thinking about these conditions, in this work, we introduced a method for solving neutrosophic multiobjective LP (NMOLP) problems having triangular neutrosophic numbers. In the literature study, there is no method for solving NMOLP problem. Therefore, here we consider a NMOLP problem with mixed constraints, where the parameters are assumed to be triangular neutrosophic numbers (TNNs). So, we propose a method for solving NMOLP problem with the help of linear membership function. After utilizing membership function, the problem is converted into equivalent crisp LP (CrLP) problem and solved by any suitable method which is readily available. To demonstrate the efficiency and accuracy of the proposed method, we consider one classical MOLP problem and solve it. Finally, we conclude that the proposed approach also helps decision-makers to not only know and optimize the most likely situation but also realize the outcomes in the optimistic and pessimistic business situations, so that decision-makers can prepare and take necessary actions for future uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.