The osteogenic potential of mesenchymal stem cells (MSCs) is severely impaired under persistent inflammation of periodontitis. A highly efficient way to promote or rescue osteogenic potential of MSCs under inflammation remains an unmet goal. Herein, metformin carbon dots (MCDs) with excellent biocompatibility are prepared from metformin hydrochloride and citric acid via a hydrothermal method. The MCDs can more effectively enhance the alkaline phosphatase (ALP) activity, calcium deposition nodules formation, expression of osteogenic genes and proteins in rat bone marrow mesenchymal stem cells (rBMSCs) than metformin under both inflammatory and normal conditions. Moreover, a novel pathway of extracellular signal‐regulated kinases (ERK)/AMP‐activated protein kinase (AMPK) signaling is involved in the MCDs‐induced osteogenesis. In periodontitis rats, MCDs can effectively regenerate the lost alveolar bone, but not the metformin. Taken together, MCDs can be the promising candidate nanomaterial for periodontitis treatment. This work may provide a new pharmacological target of ERK/AMPK pathway for treating bone loss and also give additional insights into developing nanodrugs from the numerous medications.
This study investigated power density and relevant information related to light-curing units used in private dental offices in Changchun City, China. The power density of 196 light-curing units used in private dental offices in Changchun City was measured using a simple random sampling method. Relevant information included the brand, type, years of operation, frequency of use, model numbers and types of light guide, resin buildup on the light guides, damage caused by the light guides, required maintenance of the curing lights, and ratio of the unit and chair number. There were 132 quartz tungsten halogen (QTH) units and 64 light-emitting diode units. The power density range was defined as 0-1,730 mW/cm(2). The mean power density was 453.1 mW/cm(2). The mean years of operation of the light-curing units were 3.96. The majority of dentists never tested the power density of the light-curing units and a considerable number of light guide surfaces showed resin buildup and damage. In Changchun City, the majority of light-curing units were QTH. Some units needed to be replaced due to aging. The majority of dentists were not aware that the light-curing units require periodic testing and maintenance. The data herein indicate the importance of periodic testing of the power density of light-curing units and timely replacement of the components and then guarantee the quality of medical services and their benefits to patients.
Nanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.