The solution precursor plasma spray (SPPS) process is a relatively new and flexible thermal spray process that can produce a wide variety of novel materials, including some with superior properties. The SPPS process involves injecting atomized droplets of a precursor solution into the plasma. The properties of resultant deposits depend on the time-temperature history of the droplets in the plasma, ranging from ultra-fine splats to unmelted crystalline particles to unpyrolized particles. By controlling the volume fraction of these three different constituents, a variety of coatings can be produced, all with a nanograin size. In this article, we will be reviewing research related to thermal barrier coatings, emphasizing the processing conditions necessary to obtain a range of microstructures and associated properties. The SPPS process produces a unique strain-tolerant, low-thermal conductivity microstructure consisting of (i) three-dimensional micrometer and nanometer pores, (ii) through-coating thickness (vertical) cracks, (iii) ultra-fine splats, and (iv) inter-pass boundaries. Both thin (0.12 mm) and thick (4 mm) coatings have been fabricated. The volume fraction of porosity can be varied from 10% to 40% while retaining the characteristic microstructure of vertical cracks and ultra-fine splats. The mechanism of vertical crack formation will be described.
A novel process, solution precursor plasma spray (SPPS), is presented for depositing thermal barrier coatings (TBCs), in which aqueous chemical precursors are injected into a standard direct current plasma spray system. The resulting coatings microstructure has three unique features: (1) ultra fine splats (1 µm), (2) nanometer and micron-sized interconnected porosity, and (3) closely spaced, through-thickness cracks. Coatings over 3 mm thick can be readily deposited using the SPPS process. Coating durability is excellent, with SPPS coatings showing, in furnace cycling tests, 2.5 times the spallation life of air plasma coatings (APS) and 1.5 times the life of electron beam physical vapor deposited (EB-PVD) coatings. The conductivity of SPPS coatings is lower than EB-PVD coatings and higher than the best APS coatings. Manufacturing cost is expected to be similar to APS coatings and much lower than EB-PVD coatings. The SPPS deposition process includes droplet break-up and material arriving at the deposition surface in various physical states ranging from aqueous solution, gel phase, to fully-molten ceramic. The relation between the arrival state of the material and the microstructure is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.