This study aimed to investigate that rapid high-temperature treatment (RHT) at an appropriate temperature could accelerate callus formation by effectively promoting the necessary metabolic pathways in sweet potato callus. In this study, the callus of sweet potato was treated with heat shock at 50, 65, and 80 °C for 15 min. The callus formation was observed within 1, 3, and 5 days, and the accumulation of intermediates in the metabolism of phenylpropane and reactive oxygen species and changes in enzyme activities were determined. The results showed that appropriate RHT treatment at 65 °C stimulated the metabolism of reactive oxygen species at the injury site of sweet potato on the first day, and maintained a high level of reactive oxygen species production and scavenging within 5 days. The higher level of reactive oxygen species stimulated the phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase and cinnamate-4-hydroxylase activities of the phenylpropane metabolic pathway, and promoted the rapid synthesis of chlorogenic acid, p-coumaric acid, rutin, and caffeic acid at the injury site, which stacked to form callus. By Pearson’s correlation analysis, catalase (CAT), PAL, and chlorogenic acid content were found to be strongly positively correlated with changes in all metabolites and enzymatic activities. Our results indicated that appropriate high-temperature rapid treatment could promote sweet potato callus by inducing reactive oxygen species and phenylpropane metabolism; moreover, CAT, PAL, and chlorogenic acid were key factors in promoting two metabolic pathways in sweet potato callus.
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China‘s mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
The key factors for resistance to chilling injury in apricot fruits were obtained by analyzing the low-temperature storage characteristics of 21 varieties of apricot fruits in the main producing areas of China. Twenty-one varieties of apricots from different production areas in China were stored at 0 °C for 50 d and then shelved at 25 °C. The storage quality, chilling injury, reactive oxygen species (ROS), antioxidant ability, and contents of bioactive substances of the apricots were measured and analyzed. The results showed that the 21 varieties of apricot fruits could be divided into two categories according to tolerance during low-temperature storage, where there was chilling tolerance and lack of chilling tolerance. Eleven varieties of apricots, of which Xiangbai and Yunbai are representative, suffered from severe chilling injury after cold storage and shelf life. After 50 d of storage at 0 °C, the levels of superoxide anions and hydrogen peroxide accumulated in the 11 varieties of apricots with a lack of chilling tolerance during storage were significantly higher than those in the remaining 10 varieties of apricots with chilling tolerance. In addition, the activities of ROS scavenging enzymes, represented by superoxide dismutase, catalase and peroxidase, were significantly decreased in 11 varieties of apricots with a lack of chilling tolerance during storage. The contents of bioactive substances with ROS scavenging ability, represented by ascorbic acid, total phenols, carotenoids, and total flavonoids, also significantly decreased. The 10 varieties of apricots, of which Akeximixi and Suanmao are representative, were less affected by chilling injury because the production and removal of ROS were maintained at normal levels, avoiding the damaging effects of ROS accumulation in the fruit. In addition, the 10 apricot varieties with chilling tolerance during storage had higher sugar and acid contents after harvest. This could supply energy for physiological metabolism during cold storage and provide carbon skeletons for secondary metabolism, thus enhancing the chilling tolerance of the fruits. Based on the results of cluster analysis combined with the geographical distribution of the 21 fruit varieties, it was found that apricot varieties with chilling tolerance during storage were all from the northwestern region of China where diurnal temperature differences and rapid climate changes occur. In conclusion, maintaining the balance of ROS production and removal in apricots during cold storage is a key factor to enhance the storage tolerance of apricots. Moreover, apricots with higher initial glycolic acid and bioactive substance contents are less susceptible to chilling injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.