Autism spectrum disorders (ASDs) are characterized by impairments in social behaviors that are sometimes coupled to specialized cognitive abilities. A small percentage of ASD patients carry mutations in genes encoding neuroligins, which are postsynaptic cell-adhesion molecules. We introduced one of these mutations into mice: the Arg451-->Cys451 (R451C) substitution in neuroligin-3. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly, these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. These data suggest that increased inhibitory synaptic transmission may contribute to human ASDs and that the R451C knockin mice may be a useful model for studying autism-related behaviors.
SUMMARY At a synapse, fast synchronous neurotransmitter release requires localization of Ca2+-channels to presynaptic active zones. How Ca2+-channels are recruited to active zones, however, remains unknown. Using unbiased yeast two-hybrid screens, we here identify a direct interaction of the central PDZ-domain of the active-zone protein RIM with the C-termini of presynaptic N- and P/Q-type Ca2+-channels, but not L-type Ca2+-channels. To test the physiological significance of this interaction, we generated conditional knockout mice lacking all presynaptic RIM isoforms. Deletion of all RIMs ablated most neurotransmitter release by simultaneously impairing the priming of synaptic vesicles and by decreasing the presynaptic localization of Ca2+-channels. Strikingly, rescue of the decreased Ca2+-channel localization required the RIM PDZ-domain, whereas rescue of vesicle priming required the RIM N-terminus. We propose that RIMs tether N- and P/Q-type Ca2+-channels to presynaptic active zones via a direct PDZ-domain mediated interaction, thereby enabling fast, synchronous triggering of neurotransmitter release at a synapse.
Synapses, the junctions between nerve cells through which they communicate, are formed by the coordinated assembly and tight attachment of pre- and postsynaptic specializations. We now show that SynCAM is a brain-specific, immunoglobulin domain-containing protein that binds to intracellular PDZ-domain proteins and functions as a homophilic cell adhesion molecule at the synapse. Expression of the isolated cytoplasmic tail of SynCAM in neurons inhibited synapse assembly. Conversely, expression of full-length SynCAM in nonneuronal cells induced synapse formation by cocultured hippocampal neurons with normal release properties. Glutamatergic synaptic transmission was reconstituted in these nonneuronal cells by coexpressing glutamate receptors with SynCAM, which suggests that a single type of adhesion molecule and glutamate receptor are sufficient for a functional postsynaptic response.
SUMMARY Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Objective: This study investigated the influence of Coronavirus Disease 2019 (COVID-19) on lung function in early convalescence phase. Methods: A retrospective study of COVID-19 patients at the Fifth Affiliated Hospital of Sun Yat-sen University were conducted, with serial assessments including lung volumes (TLC), spirometry (FVC, FEV1), lung diffusing capacity for carbon monoxide (DLCO),respiratory muscle strength, 6-min walking distance (6MWD) and high resolution CT being collected at 30 days after discharged.Results: Fifty-seven patients completed the serial assessments. There were 40 non-severe cases and 17 severe cases. Thirty-one patients (54.3%) had abnormal CT findings. Abnormalities were detected in the pulmonary function tests in 43 (75.4%) of the patients. Six (10.5%), 5(8.7%), 25(43.8%) 7(12.3%), and 30 (52.6%) patients had FVC, FEV1, FEV1/FVC ratio, TLC, and DLCO values less than 80% of predicted values, respectively. 28 (49.1%) and 13 (22.8%) patients had PImax and PEmax values less than 80% of the corresponding predicted values. Compared with non-severe cases, severe patients showed higher incidence of DLCO impairment (75.6%vs42.5%, p = 0.019), higher lung total severity score (TSS) and R20, and significantly lower percentage of predicted TLC and 6MWD. No significant correlation between TSS and pulmonary function parameters was found during follow-up visit. Conclusion: Impaired diffusing-capacity, lower respiratory muscle strength, and lung imaging abnormalities were detected in more than half of the COVID-19 patients in early convalescence phase. Compared with non-severe cases, severe patients had a higher incidence of DLCO impairment and encountered more TLC decrease and 6MWD decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.