UC MSCs up-regulate Treg and down-regulate Th17 cells through the regulation of TGF-β and PGE2 in lupus patients.
Allogeneic mesenchymal stem cells (MSCs) exhibit immunoregulatory function in human autoimmune diseases such as systemic lupus erythematosus (SLE), but the underlying mechanisms remain incompletely understood. Here we show that the number of peripheral tolerogenic CD1c + dendritic cells (DCs) and the levels of serum FLT3L are significantly decreased in SLE patients especially with lupus nephritis, compared to healthy controls. Transplantation of allogeneic umbilical cord-derived MSCs (UC-MSCs) significantly up-regulates peripheral blood CD1c + DCs and serum FLT3L. Mechanistically, UC-MSCs express FLT3L that binds to FLT3 on CD1c + DCs to promote the proliferation and inhibit the apoptosis of tolerogenic CD1c + DCs. Conversely, reduction of FLT3L with small interfering RNA in MSCs abolishes the up-regulation of tolerogenic CD1c + DCs in lupus patients treated with MSCs. Interferon-γ induces FLT3L expression in UC-MSCs through JAK/STAT signaling pathway. Thus, allogeneic MSCs might suppress inflammation in lupus through up-regulating tolerogenic DCs.
The aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7. The possible adverse events, including immediately after MSCs infusions, as well as the long-term safety profiles were observed. Blood and urine routine test, liver function, electrocardiogram, chest radiography and serum levels of tumor markers, including alpha fetal protein (AFP), cancer embryo antigen (CEA), carbohydrate antigen 155 (CA155) and CA199, were assayed before and 1, 2, 4 and 6 years after MSCs transplantation. All the patients completed two times of MSCs infusions. One patient had mild dizzy and warm sensation 5 min after MSCs infusion, and the symptoms disappeared quickly. No other adverse event, including fluster, headache, nausea or vomit, was observed. There was no change in peripheral white blood cell count, red blood cell count and platelet number in these patients after followed up for 6 years. Liver functional analysis showed that serum alanine aminotransferase, glutamic-oxalacetic transaminase, total bilirubin and direct bilirubin remained in normal range after MSCs infusions. No newly onset abnormality was detected on electrocardiogram and chest radiography. Moreover, we found no rise of serum tumor markers, including AFP, CEA, CA125 and CA199, before and 6 years after MSCs infusions. Our long-term observational study demonstrated a good safety profile of allogeneic UC MSCs in SLE patients.
Umbilical cord (UC)‐derived mesenchymal stem cells (MSCs) show immunoregulatory properties on various immune cells and display therapeutic effects on various autoimmune diseases such as systemic lupus erythematosus (SLE). The aim of this study was to investigate the effect of the SLE environment on UC MSCs and to identify a potential serum biomarker to predict the therapeutic effect. UC MSCs were cocultured with peripheral blood mononuclear cells (PBMCs) from active lupus patients, and the proliferation, apoptosis and surface markers of UC MSCs were observed. UC MSC functional molecules were assessed by real‐time polymerase chain reaction, and the signaling pathways were analyzed by Western blot. The clinical effect of MSC transplantation (MSCT) for lupus patients was followed‐up, whereas baseline serum cytokines were analyzed by enzyme‐linked immunosorbent assay. The coculture of PBMC from lupus patients promoted MSC proliferation. Lupus PBMCs were more potent in stimulating UC MSCs to secrete vascular endothelial growth factor (VEGF) and CXCL‐12. Furthermore, lupus PBMCs activated Akt, IκB, and Stat5 signaling pathways in UC MSCs but did not affect Erk1/2 and Smad1/5/8 pathways. Moreover, our clinical study showed that higher baseline levels of IFN‐γ might predict a good response to MSCT in active lupus patients. Baseline IFN‐γ levels may predict clinical response to MSC therapy for active lupus patients, which will help to choose suitable patients for clinical transplantation. stem cells translational medicine 2017;6:1777–1785
BackgroundNotch-1 promotes invasion and metastasis of cancer cells but its role in salivary adenoid cystic carcinoma (SACC) remains unelucidated. Here, we sought to investigate the effect of Notch-1 knockdown on the invasion and metastasis of SACC cells.MethodsStable ACC-M cells whose Notch-1 was silenced by lentiviral vectors were established. Cellular proliferation was evaluated by the MTT assays and clonogenic assays, apoptosis by flow cytometry and the migration of ACC-M cells by Transwell assays. Metastasis was evaluated by examining the number of lung nodules in Balb⁄c nu⁄nu nude mice bearing subcutaneous SACC xenografts.ResultsOur MTT assay revealed that Notch-1 knockdown significantly suppressed the proliferation of ACC-M cells compared with non-infected or scrambled control cells. Clonogenic assays further showed that Notch-1 knockdown significantly suppressed the clonogenic growth of ACC-M cells (p < 0.01 vs. controls). Our flow cytometry demonstrated that Notch-1 knockdown was associated with a significantly higher proportion of late apoptotic and necrotic cells (p < 0.01 vs. controls). Transwell assays revealed that Notch-1 knockdown markedly reduced the migratory capacity of ACC-M cells (p < 0.01 vs. controls) and xenograft studies showed that the number of metastatic nodules in the lung surface was significantly lower in nude mice bearing xenografts with Notch-1 knockdown compared to those bearing control xenografts (p < 0.01 vs. controls).ConclusionNotch-1 knockdown suppresses the growth and migration of SACC cells in vitro and the metastasis of SACC cells in vivo. Notch-1 may be a new candidate target in SACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.