The interface bonding behavior between the steel tube and the concrete of concrete-filled steel tube (CFST) blended with circulating fluidized bed bottom ash (CFB-BA) was investigated in this study. A total of 8 groups of CFSTs stub columns were prepared with different dosage of CFB-BA, water-binder ratio (W/B), and interface bonding length. A series of push-out tests were carried out to acquire the data representing the interface bonding behavior. The results show that the dosage of CFB-BA has a direct effect on interface bonding behavior of CFST. CFB-BA can improve the interface bonding behavior of CFST. The highest ultimate bonding load and strength are achieved when the dosage of CFB-BA is 30%. When the dosage of CFB-BA increases to 50%, its interface bonding behavior decreases, but is still better than that of CFST without CFB-BA. W/B has a negative correlation with the interface bonding behavior of CFST. While the W/B increases, the interface bonding load and strength of CFST decreases. The increase of the interface bonding length can improve the interface bonding load, but cannot improve the interface bonding strength.
Desulfurization slag (DS) is the solid waste discharged from the bottom of the circulating fluidized bed (CFB) boiler. It has good pozzolanic activity, self-hardening property and large expansibility. In this paper, ground desulfurization slag (GDS) is used as mineral admixture to replace cement to prepare self-compacting concrete (SCC). In order to find out the influence laws of different factors on the axial compressive properties of the self-compacting concrete filled steel tube (CFST), seven types of SCC are prepared and nine groups of CFST short column are fabricated. Filling ability test, compressive strength test and axial compressive test are performed. The filling ability and the compressive strength of the SCCs are investigated, and the axial compressive properties of the CFSTs are researched. The results show that the amount of polycarboxylate superplasticizer (PS) increases with the amount of GDS, and the addition of GDS decreases the 3d, 7d and 28d compressive strength of the SCCs. The optimum amount of GDS for SCCs and CFSTs is 30%. When the amount of GDS is 30%, the ultimate bearing capacity of CFST short column (GP3) is the highest, which is 33.6% higher than that of GP1 without GDS. The influence law of the GDS’s amount on the CFSTs’ ultimate bearing capacity is quite different from that of the GDS’s amount on the SCCs’ compressive strength. The ultimate bearing capacity of CFSTs can be significantly improved by adding GDS. Sodium sulfate can improve both the compressive strength of the SCC and the bearing capacity of the CFST.
Desulfurization ash and fly ash are solid wastes discharged from boilers of power plants. Their utilization rate is low, especially desulfurization ash, most of which is stored. In order to realize their resource utilization, they are used to modify loess in this paper. Nine group compaction tests and 32 group direct shear tests are done in order to explore the influence law of desulfurization ash and fly ash on the strength of the loess. Meanwhile, FLAC3D software is used to numerically simulate the direct shear test, and the simulation results and the test results are compared and analyzed. The results show that, with the increase of desulfurization ash’s amount, the shear strength of the modified loess increases first and then decreases. The loess modified by the fly ash has the same law with that of the desulfurization ash. The best mass ratio of modified loess is 80:20. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 12.74% higher than that of the pure loess on average and the shear strength of loess modified by fly ash is 3.59% higher than that of the pure loess on average. The effect of the desulfurization ash on modifying the loess is better than that of the fly ash. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 9.15% higher than that of the fly ash on average. Comparing the results of the simulation calculation with the actual test results, the increase rate of the shear stress of the FLAC3D simulation is larger than that of the actual test, and the simulated shear strength is about 8.21% higher than the test shear strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.