Suppression of the chlorophyll a (Chl a) Mg-dechelatase gene, SGR/NYE1, blocks the degradation of Chl a, resulting in a 'stay-green' trait. In this study, we investigated the effect of Chl a catabolism on plant heat-induced leaf senescence in perennial ryegrass (Lolium perenne L.). Under heat stress, the LpSGR-RNAi lines not only lost the stay-green phenotype but also showed accelerated leaf senescence with increased chloroplast disruption, more loss of photosystem (PS) proteins, lower PSⅡ quantum yields, higher levels of energy dissipation, increased accumulation of reactive oxygen species (ROS) and lower ROS-scavenging enzyme activities.Transcriptome analysis revealed that the suppression of LpSGR downregulated genes encoding PS proteins and ROS-scavenging enzymes and upregulated those encoding ROS-generation enzymes under heat stress. To account for the possible side-effects resulting from constitutive suppression of LpSGR on plant growth and heat tolerance, we constructed an ethanol-inducible RNAi vector to suppress LpSGR functions.In the absence of ethanol induction, these lines exhibited the same growth and heat tolerance as the wildtype (WT). Upon ethanol induction, the transgenic lines showed compromised heat tolerance and a postharvest stay-green phenotype. Taken together, SGR-mediated Chl a catabolism is required for plant heat tolerance.
Background
Leaf color variation is a common trait in plants and widely distributed in many plants. In this study, a leaf color mutation in Camellia japonica (cultivar named as Maguxianzi, M) was used as material, and the mechanism of leaf color variation was revealed by physiological, cytological, transcriptome and microbiome analyses.
Results
The yellowing C. japonica (M) exhibits lower pigment content than its parent (cultivar named as Huafurong, H), especially chlorophyll (Chl) and carotenoid, and leaves of M have weaker photosynthesis. Subsequently, the results of transmission electron microscopy(TEM) exhibited that M chloroplast was accompanied by broken thylakoid membrane, degraded thylakoid grana, and filled with many vesicles. Furthermore, comparative transcriptome sequencing identified 3,298 differentially expressed genes (DEGs). KEGG annotation analysis results showed that 69 significantly enriched DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and plant-pathogen interaction. On this basis, we sequenced the microbial diversity of the H and M leaves. The sequencing results suggested that the abundance of Didymella in the M leaves was significantly higher than that in the H leaves, which meant that M leaves might be infected by Didymella.
Conclusions
Therefore, we speculated that Didymella infected M leaves while reduced Chl and carotenoid content by damaging chloroplast structures, and altered the intensity of photosynthesis, thereby causing the leaf yellowing phenomenon of C. japonica (M). This research will provide new insights into the leaf color variation mechanism and lay a theoretical foundation for plant breeding and molecular markers.
Summary
Arbuscular mycorrhizal (AM) fungi can form mutualistic endosymbiosis with > 70% of land plants for obtaining fatty acids and sugars, in return, AM fungi promote plant nutrients and water acquisition to enhance plant fitness. However, how AM fungi orchestrate its own signaling components in response to drought stress remains elusive.
Here, we identify a transcription factor containing C2H2 zinc finger domains, RiMsn2 from Rhizophagus irregularis. To characterize the RiMsn2, we combined heterologous expression, subcellular localization in yeasts, and biochemical and molecular studies with reverse genetics approaches during the in planta phase.
The results indicate that RiMsn2 is highly conserved across AM fungal species and induced during the early stages of symbiosis. It is significantly upregulated in mycorrhizal roots under severe drought conditions. The nucleus‐localized RiMsn2 regulates osmotic homeostasis and trehalose contents of yeasts. Importantly, gene silencing analyses indicate that RiMsn2 is essential for arbuscule formation and enhances plant tolerance to drought stress. Results from yeasts and biochemical experiments suggest that the RiHog1‐RiMsn2‐STREs module controls the drought stress‐responsive genes in AM fungal symbiont.
In conclusion, our findings reveal that a module centered on the transcriptional activator RiMsn2 from AM fungus regulates drought stress tolerance in host plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.