Metformin can improve glucose metabolism in IGT patients and may be a treatment option in their management of IGT subjects.
Elevated serum XO activity, but not UA concentration, was associated with an increased risk of developing T2DM in women and men with mutual adjustment for XO and UA. Further studies are needed to examine the underlying mechanisms.
miR-29a-3p has been shown to be associated with cardiovascular diseases; however, the effect of miR-29a-3p on endothelial dysfunction is unclear. This study aimed to reveal the effects and mechanisms of miR-29a-3p on endothelial dysfunction. The levels of vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin were determined by real-time PCR and immunofluorescence staining to reveal the degree of tumor necrosis factor alpha (TNFα)-induced endothelial dysfunction. A luciferase activity assay and cell transfection with a miR-29a-3p mimic or an inhibitor were used to reveal the underlying mechanisms of miR-29a-3p action. Furthermore, the effects of miR-29a-3p on endothelial dysfunction were assessed in C57BL/6 mice injected with TNFα and/or a miR-29a-3p agomir. The results showed that the expression of TNFα-induced adhesion molecules in vascular endothelial cells (EA.hy926 cells, human aortic endothelial cells [HAECs], and primary human umbilical vein endothelial cells [pHUVECs]) and smooth muscle cells (human umbilical vein smooth muscle cells [HUVSMCs]) was significantly decreased following transfection with miR-29a-3p. This effect was reversed by cotransfection with a miR-29a-3p inhibitor. As a key target of miR-29a-3p, tumor necrosis factor receptor 1 mediated the effect of miR-29a-3p. Moreover, miR-29a-3p decreased the plasma levels of TNFα-induced VCAM-1 (32.62%), ICAM-1 (38.22%), and E-selectin (39.32%) in vivo. These data indicate that miR-29a-3p plays a protective role in TNFα-induced endothelial dysfunction, suggesting that miR-29a-3p is a novel target for the prevention and treatment of atherosclerosis.
Background/Aims: Atherosclerosis is the primary cause of cardiovascular ischaemic events; arterial stiffness is a characteristic of the atherosclerotic process. MicroRNAs (miRNAs) have been revealed as crucial modulators of atherosclerosis. However, the role of arterial stiffness-related miRNAs in the atherosclerotic process is still unclear. Methods: Four hundred six participants from Northern China were enrolled in this study. Circulating miR-1185 and adhesion molecule levels were measured. Multiple linear regression models were used to evaluate the association of miR-1185 levels with brachial-ankle pulse wave velocity (baPWV) and adhesion molecule levels. A mediation analysis was also performed to examine the mediating effect. Cell adhesion molecule levels were measured in primary human umbilical vein endothelial cells (pHUVECs) and human umbilical vein smooth cells (HUVSMCs) transfected with miR-1185 or co-transfected with a miR-1185 inhibitor. Results: miR-1185 was independently correlated with arterial stiffness. A positive relationship between miR-1185 and vascular cell adhesion molecule-1 (VCAM-1) and E-selectin levels was observed. VCAM- 1 and E-selectin partially mediated the correlation between miR-1185 and arterial stiffness. miR-1185 induced a significant increase in the VCAM-1 and E-selectin levels in pHUVECs and HUVSMCs in vitro. According to our mechanistic analysis, VCAM-1 and E-selectin mediated miR-1185-induced arterial stiffening. Conclusions: miR-1185 modulated the expression of VCAM-1 and E-selectin to promote arterial stiffening, suggesting that miR-1185 plays a crucial role in the development of atherosclerosis and may serve as a novel therapeutic target for atherosclerosis.
Background/Aims: Atherosclerosis is a multifactorial chronic disease and is the main cause of death and impairment in the world. Endothelial injury and apoptosis play a crucial role in the onset and development of atherosclerosis. MicroRNAs (miRNAs) have been proven to be involved in the pathogenesis of atherosclerosis. However, studies of the functional role of apoptosis-related miRNAs in the endothelium during atherogenesis are limited. Methods: Cell injury and apoptosis were measured in five types of cells transfected with miR-1185 or co-transfected with miR-1185 and its inhibitor. Bioinformatics analysis and a luciferase reporter assay were used to confirm the targets of miR-1185. The effects of the targets of miR-1185 on endothelial apoptosis were determined using small-interfering RNA. Results: In this study, we first report that miR-1185 significantly promoted apoptosis in endothelial cells but not in vascular smooth muscle cells and macrophages. A mechanistic analysis showed that ultraviolet irradiation resistance-associated gene (UVRAG) and krev1 interaction trapped gene 1 (KRIT1), targets of miR-1185, mediated miR-1185-induced endothelial cell apoptosis. Conclusion: The results revealed the impact of miR-1185 on endothelial apoptosis, suggesting that miR-1185 may be a potential target for the prevention and treatment of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.