Anthriporphyrinoid and its dimeric homologues were synthesized by Suzuki−Miyaura coupling and subsequent oxidation. Both porphyrinoids were smoothly converted to their Pd II complexes and were further decorated by Suzuki− Miyaura coupling with thiophene derivatives and subsequent oxidative fusion reaction to provide multiply fused compounds. Most Pd II anthriporphyrinoids have been structurally well characterized to be planar for monomeric and helically twisted for dimeric species. The dimeric anthriporphyrinoids show paratropic ring currents due to their global antiaromatic networks, the extent of which increases with an increase of conjugated network. Multiply fused dimeric anthriporphyrinoids show helical structures, fully reversible six redox potentials, small HOMO−LUMO gaps, and absorption tails reaching in the near-infrared region, suggesting the high potential of this approach to explore molecular graphene. Optical separations of the dimeric helical species were accomplished, and racemization barrier heights were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.