In this work, lithium-doped lanthanum titanate (LLTO) nanosheets have been prepared by a facile hydrothermal approach. It is found that with the incorporation of lithium ions, the morphology of the product transfers from rectangular nanosheets to irregular nanosheets along with a transition from La2Ti2O7 to Li0.5La0.5TiO3. The as-prepared LLTO nanosheets are used to enhance electrochemical performance of the LiCo1/3Ni1/3Mn1/3O2 (CNM) electrode by forming a higher lithium-ion conductive network. The LiCo1/3Ni1/3Mn1/3O2-Li0.5La0.5TiO3 (CNM-LLTO) electrode shows better a lithium diffusion coefficient of 1.5 × 10(-15) cm(2) s(-1), resulting from higher lithium-ion conductivity of LLTO and shorter lithium diffusion path, compared with the lithium diffusion coefficient of CNM electrode (5.44 × 10(-16) cm(2) s(-1)). Superior reversibility and stability are also found in the CNM-LLTO electrode, which retains a capacity at 198 mAh/g after 100 cycles at a rate of 0.1 C. Therefore, it can be confirmed that the existence of LLTO nanosheets can act as bridges to facilitate the lithium-ion diffusion between the active materials and electrolytes.
We reported a facile hydrothermal approach to synthesize BaTiO3nanocubes with controlled sizes for degradation of methylene blue (MB). The nanocubes with reaction time of 48 hours exhibited the highest photocatalytic efficiency, owing to their narrower size distribution and better crystallinity compared to those of 24 hours and, at the meantime, smaller particle size than those of 72 hours. This work also demonstrated the degradation of methylene orange (MO) using BaTiO3nanocubes synthesized for 48 hours. Compared with the removal of MB, BaTiO3had lower photocatalytic activity on MO, mainly due to the poorer absorption behavior of MO on the surface of BaTiO3nanocubes. The degradation efficiency for each photocatalytic reaction was calculated. The possible mechanism of the photocatalytic decomposition on MB has been addressed as well.
In this work, we reported a facile approach to fabricate LaTiO 3 (LTO) nanosheets for resistive switching memory applications. Different from other lanthanum titanates synthesized via solvothermal approaches, herein the unique composition ratio of La : Ti : O ¼ 1 : 1 : 3 has been found. The drop-coating method was utilized to deposit LTO films followed by gold top electrode deposition to complete device fabrication. The pristine device was found to exhibit excellent bipolar resistance switching characteristics with resistance ON/OFF ratio of $100, high uniformity in switching parameters and stability at elevated temperatures as well. The origin of switching behaviour in these devices on the basis of formation and annihilation of conducting filaments was addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.