Bacterial pathogens are one of the major threats to biosafety and environmental health, and advanced assessment is a prerequisite to combating bacterial pathogens. Currently, 16S rRNA gene sequencing is efficient in the open-view detection of bacterial pathogens. However, the taxonomic resolution and applicability of this method are limited by the domain-specific pathogen database, taxonomic profiling method, and sequencing target of 16S variable regions. Here, we present a pipeline of multiple bacterial pathogen detection (MBPD) to identify the animal, plant, and zoonotic pathogens. MBPD is based on a large, curated database of the full-length 16S genes of 1986 reported bacterial pathogen species covering 72,685 sequences. In silico comparison allowed MBPD to provide the appropriate similarity threshold for both full-length and variableregion sequencing platforms, while the subregion of V3−V4 (mean: 88.37%, accuracy rate compared to V1−V9) outperformed other variable regions in pathogen identification compared to full-length sequencing. Benchmarking on real data sets suggested the superiority of MBPD in a broader range of pathogen detections compared with other methods, including 16SPIP and MIP. Beyond detecting the known causal agent of animal, human, and plant diseases, MBPD is capable of identifying cocontaminating pathogens from biological and environmental samples. Overall, we provide a MBPD pipeline for agricultural, veterinary, medical, and environmental monitoring to achieve One Health.
Pathogen detection from biological and environmental samples is important for global disease control. Despite advances in pathogen detection using deep learning, current algorithms have limitations in processing long genomic sequences. Through the deep cross-fusion of cross, residual and deep neural networks, we developed DCiPatho for accurate pathogen detection based on the integrated frequency features of 3-to-7 k-mers. Compared with the existing state-of-the-art algorithms, DCiPatho can be used to accurately identify distinct pathogenic bacteria infecting humans, animals and plants. We evaluated DCiPatho on both learned and unlearned pathogen species using both genomics and metagenomics datasets. DCiPatho is an effective tool for the genomic-scale identification of pathogens by integrating the frequency of k-mers into deep cross-fusion networks. The source code is publicly available at https://github.com/LorMeBioAI/DCiPatho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.