Glycine-rich proteins (GRPs) have diverse amino acid sequences and are involved in a variety of biological processes. The role of GRPs in plant pathogenic fungi has not been reported. In this study, we identified and functionally characterized a novel gene named MoGRP1 in Magnaporthe oryzae, which encodes a protein that has an N-terminal RNA recognition motif (RRM) and a C-terminal glycine-rich domain with four Arg-Gly-Gly (RGG) repeats. Deletion of MoGRP1 resulted in dramatic reductions in fungal virulence, mycelial growth, and conidiation. The ΔMogrp1 mutants were also defective in cell wall integrity and in their responses to different stresses. MoGrp1 was localized to the nucleus and was co-immunoprecipitated with several components of the spliceosome, including subunits of the U1 snRNP and U2 snRNP complexes. Moreover, MoGrp1 exhibited binding affinity for poly(U). Importantly, MoGrp1 was responsible for the normal splicing of genes involved in infection-related morphogenesis. Domain deletion assays showed that both the RRM domain and its two adjacent RGG repeats were essential to the full function of MoGrp1. Notably, the nine amino acids between the first and the second RGG repeats were indispensable for nuclear localization and for the biological functions of MoGrp1. Taken together, our data suggest that MoGrp1 functions as a novel splicing factor with poly(U) binding activity to regulate fungal virulence, development, and stress responses in the rice blast fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.