Recently GAN generated face images are more and more realistic with high-quality, even hard for human eyes to detect. On the other hand, the forensics community keeps on developing methods to detect these generated fake images and try to ensure the credibility of visual contents. Although researchers have developed some methods to detect generated images, few of them explore the important problem of generalization ability of forensics model. As new types of GANs are emerging fast, the generalization ability of forensics models to detect new types of GAN images is absolutely an essential research topic, which is also very challenging. In this paper, we explore this problem and propose to use preprocessed images to train a forensic CNN model. By applying similar image level preprocessing to both real and fake images, unstable low level noise cues are destroyed, and the forensics model is forced to learn more intrinsic features to classify the generated and real face images. Our experimental results also prove the effectiveness of the proposed method.
No abstract
It is well known that deep learning models are vulnerable to adversarial examples crafted by maliciously adding perturbations to original inputs. There are two types of attacks: targeted attack and non-targeted attack, and most researchers often pay more attention to the targeted adversarial examples. However, targeted attack has a low success rate, especially when aiming at a robust model or under a black-box attack protocol. In this case, non-targeted attack is the last chance to disable AI systems. Thus, in this paper, we propose a new attack mechanism which performs the non-targeted attack when the targeted attack fails. Besides, we aim to generate a single adversarial sample for different deployed models of the same task, e.g. image classification models. Hence, for this practical application, we focus on attacking ensemble models by dividing them into two groups: easy-to-attack and robust models. We alternately attack these two groups of models in the non-targeted or targeted manner. We name it a bagging and stacking ensemble (BAST) attack. The BAST attack can generate an adversarial sample that fails multiple models simultaneously. Some of the models classify the adversarial sample as a target label, and other models which are not attacked successfully may give wrong labels at least. The experimental results show that the proposed BAST attack outperforms the state-of-the-art attack methods on the new defined criterion that considers both targeted and non-targeted attack performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.