Ionosphere products that are relatively precise are available thanks to the efforts of the International GNSS Service (IGS), and it might be possible to obtain a high success rate for the fixed integer ambiguities for medium-or longerbaseline ambiguity resolution (AR) using the ionosphere products as a priori information constraints. In this study, we used the IGS precise ionosphere products as a priori information before forming double-difference (DD) measurement equations using only original observables in a mid-range relative positioning and estimated the ionosphere residuals explicitly after DD. Furthermore, we proposed a sequential and partial ambiguity resolution (SPAR) strategy under the integer least square condition to realize fast and reliable AR. To demonstrate our proposed strategy, we randomly selected seven baselines ranging from 30 to 111 km and undertook positioning in a post-processing mode using real GPS dual-frequency data. According to the results, the SPAR strategy has a faster convergence process compared with batch AR. For instance, the convergence time with >90 % cumulative frequency percentage (probability) for 30, 40, 56, 66, 80, 95, and 111 km baselines was advanced by 55, 50, >75, 85, >110, 65, and >35 epochs, respectively, with a 30-s sample interval. By considering ionospheric correction before DD, we found further improvement in the initialization performance with the use of the SPAR strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.