Summary
By curing the reaction mixture of diphenylphosphine oxide (DPO) and diglycidyl ether of bisphenol A with 4,4′‐diaminodiphenylsulfone, flame‐retardant epoxy resins (EP/DPO) were prepared. Flame‐retardant epoxy resins modified with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) were similarly prepared (denoted as EP/DOPO). The limiting oxygen index value of pure epoxy resin, EP/DPO–P‐0.9 (with a phosphorus content of 0.9 wt%), and EP/DOPO–P‐0.9 are 23.0, 30.5, and 29.4%, respectively. EP/DPO–P‐0.9 reached a UL‐94 vertical burning test V‐0 rating, while EP/DOPO–P‐0.9 failed. The results of the cone calorimetry test, thermo‐oxidative degradation behavior study, and pyrolysis‐gas chromatography/mass spectrometry analysis indicated that both flame retardants mainly act through the gas‐phase activity mechanism. Together, the results of this study suggest that EP/DPO are high performance resins with good thermal stability, high glass transition temperature, and low water absorptivity for practical applications.
A novel visible-light-induced intramolecular [2 + 2] cycloaddition of methylenecyclopropanes (MCPs) for the rapid construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine.
The site selective C(sp2)–H bond functionalization of olefins has been achieved through a visible-light-induced photoredox-quinuclidine dual catalysis upon merging quinuclidinium radical cation addition to alkene strategy and the distal heteroaryl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.