Background: Colloidal gold based lateral flow immunoassay (LFIA) commonly suffers from relatively low detection sensitivity due to the insufficient brightness of conventional gold nanoparticles (AuNPs) with the size of 20–40 nm. Methods: Herein, three kinds of gold nanobeads (GNBs) with the size of 94 nm, 129 nm, and 237 nm, were synthesized by encapsulating numerous hydrophobic AuNPs (10 nm) into polymer matrix. The synthesized GNBs exhibited the enhanced colorimetric signal intensity compared with 20–40 nm AuNPs. The effects of the size of GNBs on the sensitivity of LFIA with competitive format were assessed. Results: The results showed that the LFIA using 129 nm GNBs as amplified signal probes exhibits the best sensitivity for fumonisin B1 (FB1) detection with a cut-off limit (for visual qualitative detection) at 125 ng/mL, a half maximal inhibitory concentration at 11.27 ng/mL, and a detection limit at 1.76 ng/mL for detection of real corn samples, which are 8-, 3.82-, and 2.89-fold better than those of conventional AuNP40-based LFIA, respectively. The developed GNB-LFIA exhibited negligible cross-reactions with other common mycotoxins. In addition, the accuracy, precision, reliability, and practicability were demonstrated by determining real corn samples. Conclusions: All in all, the proposed study provides a promising strategy to enhance the sensitivity of competitive LFIA via using the GNBs as amplified signal probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.